### Accepted Manuscript

Crust and upper mantle shear wave structure of Northeast Algeria from Rayleigh wave dispersion analysis

Zohir Radi, Abdelkrim Yelles-Chaouche, Victor Corchete, Salim Guettouche


PII: S0031-9201(17)30012-2

DOI: http://dx.doi.org/10.1016/j.pepi.2017.06.013

Reference: PEPI 6059

To appear in: Physics of the Earth and Planetary Interiors

Received Date: 18 January 2017 Revised Date: 28 June 2017 Accepted Date: 30 June 2017



Please cite this article as: Radi, Z., Yelles-Chaouche, A., Corchete, V., Guettouche, S., Crust and upper mantle shear wave structure of Northeast Algeria from Rayleigh wave dispersion analysis, *Physics of the Earth and Planetary Interiors* (2017), doi: http://dx.doi.org/10.1016/j.pepi.2017.06.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

## **ACCEPTED MANUSCRIPT**

## Crust and upper mantle shear wave structure of Northeast Algeria from Rayleigh wave dispersion analysis

Zohir Radi<sup>(a)</sup>, Abdelkrim Yelles-Chaouche<sup>(a)</sup>, Victor Corchete<sup>(b)</sup>, Salim Guettouche<sup>(a)</sup>.

(a) Centre de Recherche en Astronomie Astrophysique et Géophysique, Route de l'Observatoire, BP
63 Bouzaréah, Alger, Algeria

(b) Higher Polytechnic School, University of Almeria, 04120 ALMERIA, Spain.

#### **Abstract**

We resolve the crust and upper mantle structure beneath Northeast Algeria at depths of 0–400 km, using inversion of fundamental mode Rayleigh wave. Our data set consists of 490 earthquakes recorded between 2007 and 2014 by five permanent broadband seismic stations in the study area. Applying a combination of different filtering technics and inversion method shear wave velocities structure were determined as functions of depth.

The resolved changes in Vs at 50 km depth are in perfect agreement with crustal thickness estimates, which reflect the study area's orogenic setting, partly overlying the collision zone between the African and Eurasian plates. The inferred Moho discontinuity depths are close to those estimated for other convergent areas. In addition, there is good agreement between our results and variations in orientations of regional seismic anisotropy. At depths of 80–180 km, negative Vs anomalies at station CBBR suggest the existence of a failed subduction slab.

**Keywords:** MFT. Inversion. Rayleigh wave. Shear wave velocity. Lithosphere. Moho. Northeast Algeria.

#### Download English Version:

# https://daneshyari.com/en/article/5787281

Download Persian Version:

https://daneshyari.com/article/5787281

Daneshyari.com