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This paper develops probabilistic transformation models that predict the probability density function (PDF) of
the preconsolidation stress (0,) of a clay based on its index properties. These probabilistic transformation
models are more versatile than traditional transformation models that only provide point estimates, because the
PDF can quantify the transformation uncertainty in o’, and also can be further used to develop median and
confidence interval estimates for o’,. The confidence interval is especially useful because the transformation
uncertainty in o’, is fairly significant. Three probabilistic transformation models are developed: one is a generic
model and the other two are models specialized for contractive and dilative clays. The generic model is ap-
plicable to both contractive and dilative clays, but its transformation uncertainty is larger. The two specialized
models require the prior knowledge about the contractive/dilative behavior for the clay of interest, but their
transformation uncertainties are smaller. The performances of the three probabilistic transformation models are
verified by statistical cross-validation and independent validation database. The analytical forms for the median
and confidence interval estimates are presented in this paper so that engineers do not need to derive the Bayesian

equations.

1. Introduction

The preconsoilidation stress (0’p) and overconsolidation ratio (OCR)
are important parameters that quantify the stress history of a clay. The
undrained shear strength of a clay can be estimated based on its o’y
(Mesri, 1975, 1989). The at-rest earth pressure coefficient can be esti-
mated based on its OCR (Mayne and Kulhawy, 1982). The contractive/
dilative behavior of a clay during shearing also depends on OCR. 0", for
a clay can be determined in laboratory using the oedometer test. It can
be also estimated based on the index properties of a clay through a
transformation model (Stas and Kulhawy, 1984; Nagaraj and Srinivasa
Murthy, 1986; DeGroot et al., 1999; Ching and Phoon, 2012; Kootahi
and Mayne, 2016) as a first-order approximation. The latter (index
properties) is desirable for the preliminary design stage where extensive
laboratory tests are not yet conducted and for scenarios where the site
investigation budget is limited.

However, there is significant uncertainty in the estimated o’, given
the knowledge of the index properties. Table 1 shows the bias and
coefficient of variation (COV) for several o’, transformation models
based on index properties. The bias is defined as the mean value for
(measured o’,)/(predicted 0’,) and COV is the coefficient of variation
for (measured o’p)/(predicted o’p). The biases and COVs for the
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transformation models in Table 1 are calibrated by the CLAY/10/7490
database developed in Ching and Phoon (2014a). The magnitude for the
transformation uncertainty is quantified by the COV. Consider the most
recent transformation model developed by Kootahi and Mayne (2016).
It has the smallest COV and yet the COV = 0.67 is still fairly large. The
COVs for other models are even larger.

It is therefore desirable to quantify the significant transformation
uncertainty in o', by adopting a probabilistic transformation model.
The main difference between probabilistic and traditional transforma-
tion models is that the former provides a probability density function
(PDF) for o', whereas the latter only provides a point estimate for o’p.
The availability of a PDF is a significant advantage because design
engineers can get a sense for the magnitude of the transformation un-
certainty, e.g., the 95% confidence interval for o/, is the interval
bounded by the 0.025- and 0.975-fractiles for the PDF. Point estimates
can also be derived from the PDF, e.g., the mean or median estimate;
Eurocode 7 has suggested the 0.05-fractile as the characteristic value
(CEN 2004). More recently, probabilistic transformation models for
some soil and rock properties have been proposed (Yan et al., 2009;
Wang et al.,, 2010; Ching and Phoon, 2012, 2014b; Wang and Cao,
2013; Ching et al., 2014, 2017b; D'Ignazio et al., 2016; Feng and
Jimenez 2015; Ng et al., 2016), but to the authors' best knowledge, the
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Table 1
Biases and coefficients of variation (COVs) for several o”, transformation models.
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Literature Transformation model Calibration results

n Bias cov
Stas and Kulhawy (1984) 0y /Pq = 10111~ 162X (for 5, < 10) 248 1.13% 1.36%
Nagaraj and Srinivasa Murthy (1986) apl(kPa) = 10%97 532X /11y — 0.25 X logyo[0y0 (kPa)] 1242 1.38% 3.46%
DeGroot et al. (1999) 0, (kPa) =~ 10%9 ~ 096 <11 1313 1.86% 1.20°
Ching and Phoon (2012) 0p /Pq = 0.235 x LI~ 1319 x 5,%-53¢ 506 1.36 0.89
Kootahi and Mayne (2016) 1242 1.10 0.67

%

i 162 x (a3p/ B ) (LLY*12(wy) ™01 if DS® > 1.123
“77.94 x (0lo/B)OTHLLYS3 (w070 if DS < 1.123

P, = one atmosphere pressure; LI = liquidity index; S; = sensitivity; w, = natural water content; LL = liquid limit; 0’,c = in-situ effective vertical stress; n = number of calibration

cases.

@ The ratios (measured o’,)/(predicted 0’,) for some cases are extremely large, so an alternative additive definition (Ching et al., 2017a) for bias and COV is adopted: bias = (sample mean
of measured 07,) / (sample mean of predicted 0’,), standard deviation = sample standard deviation of measured o0”, — bias X predicted o’,. The COV = (standard deviation) / (sample

mean of measured 0”,).

b DS = 5.152 X log;0(0yo/Pa) — 0.061 x LL — 0.093 X PL + 6.219 X e,,, where e, is the natural void ratio. It may be estimated as e, ~ w,/2.65.

probabilistic transformation model for o', based on clay index proper-
ties is not yet available.

This paper develops probabilistic transformation models for o’
based on the index properties of a clay. First, the multivariate PDF for
(0’p/Pa, 0°vo/Pa, PL, LL, Wy) is constructed from a multivariate clay
database using the translation approach (Liu and Der Kiureghian, 1986;
Li et al., 2012), where P, = 101.3 kN/m? is one atmosphere pressure,
PL and LL are plastic and liquid limits, and w, is the natural water
content. 0’y is considered because it is well known that o7, is positively
correlated to 0’yo. Wy, is considered because a large o”, tends to produce
a smaller void ratio, hence a smaller water content. PL and LL are
considered because they are limiting values for w,,. (PL, LL, w,) can be
consolidated into a single variable LI, liquidity index. However, it is
found in this paper that the prediction accuracy for o', will decrease if
such consolidation is adopted. As a result, (PL, LL, w,) are not con-
solidated into LI

The constructed multivariate PDF for (0’p/P,, 0%vo/Pa, PL, LL, Wy)
serves as the prior PDF for the subsequent Bayesian analysis. Then,
given the site-specific information on (0’yo/P,, PL, LL, w,) for a clay of
interest, the PDF of its 0’,/P, can be updated by the Bayesian analysis.
The entire framework has the numerical advantage that the updated
PDF of 0’,/P, and its point and interval estimates can be expressed in
analytical forms. Design engineers can directly implement these ana-
lytical equations without the need to re-derive the Bayesian equations.
The performance of the resulting probabilistic transformation models
will be compared with existing traditional transformation models. The
effectiveness of the probabilistic transformation models will be assessed
by validation databases.

2. Multivariate clay database

The CLAY/10/7490 database (Ching and Phoon, 2014a) is a generic
(global) clay database consisting of 7490 data points from 30 countries/
regions worldwide. The clay properties cover a wide range of OCR,
sensitivity (Sp), and plasticity index (PI). In the database, there are a
subset of 1217 data points with simultaneous knowledge of (0’,/P,,
0’vo/Pa, PL, LL, w,) from 141 sites worldwide. Data points with
OCR > 20 (possibly fissured clays) are excluded. Table 2 shows the
statistics for (0",/Pa, 0'vo/Pa, PL, LL, wy) and OCR. In the following, (Y;,
Y., ..., Ys) are defined as

Y= ln(c/p/Pa)
Y, = In(a’vo/R)

Y; = PL
Y, = LL
Ys = w, (@)

34

Table 2
Statistics for (0’p/P,, 0%vo/Pa, PL, LL, w,) & OCR for 1217 data points in CLAY/10/7490.

Clay parameter Random Mean  Standard Min Max
variable deviation

0'5/Pa - 2.48 4.27 0.08 48.49
In(0’p/P,) Y, 0.26 1.04 —2.55 3.88
[ - 1.03 1.16 0.03 14.96
In(0’y0/Pa) Y, -0.39 0.92 -3.60 271
PL Y3 27.3 11.1 0.6 76.5
LL Yy 64.4 30.5 20.3 236.4
W Ys 60.9 31.7 10.3 193.4
OCR - 2.47 2.48 0.46" 20

@ There are six data points with OCR significant < 1 (under-consolidated).
where PL, LL, and w,, are in percents, e.g., if w, = 90%, take w,, = 90.
Fig. 1 shows the histograms for (Y3, Y, Y3, Y4, Ys).

2.1. Multivariate Johnson probability density function

The 1217 data points are adopted to construct the prior multivariate
PDF of (Y1, Yo, ..., Ys) for the subsequent Bayesian analysis. It is
common for real data points to follow non-normal distributions. This
can be clearly seen in Fig. 1, where most histograms exhibit a certain
degree of asymmetry, which is not consistent with the normal model. A
practical approach for constructing the multivariate PDF is the trans-
lation approach (Liu and Der Kiureghian, 1986; Li et al., 2012): the non-
normal data (Y;, Y, ..., Ys) are first mapped into standard normal data
(X1, Xo, ..., Xs5). Then, (X3, Xo, ..., X5) are assumed to follow the mul-
tivariate standard normal distribution.

2.2. Mappmg (Y], Yz, eny Y5) into (X], Xz, ceey X5)

The first step for the translation approach is to map (Y, Yo, ..., Ys)
into (X3, Xs, ..., Xs). Ching and Phoon (2014b) and Ching et al. (2014,
2017b) have shown that the Johnson system of distributions (Phoon
and Ching, 2013) is effective in modeling various histograms of soil
parameters. We cover the Johnson system of distributions below,
starting with a well known member: the shifted lognormal distribution.
The lognormal distribution has zero as its lower bound. The shifted
lognormal distribution generalizes the lognormal distribution to ac-
count for non-zero lower bounds. If Y is shifted lognormal, the re-
lationship between X and Y is

_ ln(y - by)
ay (2)

where X is standard normal; ayx, bx, ay, and by are the parameters for the
shifted lognormal distribution. The parameter by is the lower bound of

X—bX

ax
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