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A new fully coupled poroelastic peridynamic formulation is presented and its application to fluid-filled fractures
is demonstrated. This approach is capable of predicting porous flow and deformation fields and their effects on
each other. Moreover, it captures the fracture initiation and propagation in a natural way without resorting to
an external failure criterion. The peridynamic predictions are verified by considering two benchmark problems
includingone- and two-dimensional consolidation problems.Moreover, the growth of a pre-existing hydraulical-
ly pressurized crack case is presented. Based on these results, it is concluded that the current peridynamic formu-
lation has a potential to be used for the analysis of more sophisticated poroelastic problems including fluid-filled
rock fractures as in hydraulic fracturing.
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1. Introduction

The coupling between changes in stress and changes in fluid pres-
sure forms the foundation of the subject of poroelasticity (Wang,
2000). The theory of poroelasticity has important applications in
geomechanics including oil exploration, gas-hydrate detection, seismic
monitoring of CO2 storage, hydrogeology, etc. (Carcione et al., 2010).
Poroelasticity has been studied for the last one hundred fifty years.
The increase of exploitation of groundwater and hydrocarbon resources
during early 20th century gave impetus to poroelastic research (Wang,
2000). Original formulation of poroelasticitywas developed by Terzaghi
(1925) based on his one-dimensional laboratory experiments and is
known as Terzaghi's consolidation theory. This formulationwas extend-
ed to a general three-dimensional formulation by Biot (1941). Numeri-
cal approaches have been widely used in the solution of poroelastic
equations. Amongst these numerical techniques, finite-difference,
psuedospectral, low-order finite element and spectral-finite element
methods can be cited.

A recent popular application of poroelasticity is the analysis of hy-
draulic fracturing. The hydraulic fracturing process creates and propa-
gates cracks in a porous medium by injecting fluid pressure. It has
gained significant attention as a result of its use in oil and gas extraction
from unconventional shale resources. In this particular application, a
mixture of hydraulic fluid, sand, and chemicals is pumped into a well
to create cracks in low-permeable shale, and keep them open after the
removal of the fluid. Once the process is complete, the permeability of

the shale increases significantly; thus, oil and/or gas starts to flow
through the well. Another application of hydraulic fracturing concerns
heat extraction from geothermal resources. Similar to the technique
used in oil and gas extraction, the permeability of hot rocks is enhanced
by pumping cold water into the rock. Cold water can be pumped from
one well (injection well), and hot water can be extracted from the
other well (production well). This technique, known as Hot Dry Rock
(HDR), is used in the production of electricity.

It is difficult to model the hydraulic fracturing process due to the
presence ofmultiple physicalmechanisms; it involvesfluidflow in a po-
rous medium, mechanical deformation as a result of fluid pressure, and
crack initiation and propagation. Various numerical models exist for the
simulation of hydraulic fracturing. They are based on the Finite Element
Method (FEM), Cohesive Zone Elements (CZE), eXtended FEM (XFEM),
and, most recently, peridynamics. Hunsweck et al. (2013) developed a
FEA-based algorithm, and captured the nonlinear coupling between
the fluid pressure and crack opening. They included the fluid lag (the
gap between the fluid front and the crack tip), which can be important
for small toughness, and used the Griffith criterion for crack propaga-
tion. In another study, Ouyang et al. (1997) performed FEA for coupled
hydraulic fluid transport and fracture analysis. They used an automatic
and domain-adaptive remeshing technique for crack propagation.

Remeshing can be numerically difficult for certain problems; thus,
CZE can be used to model hydraulic fracturing. Chen (2012) used a
CZE to simulate the propagation of a viscosity-dominated hydraulic
fracture in an infinite and impermeable elastic medium. Two different
meshing schemes were utilized. The first scheme employed much
finer cohesive elements than those of the neighboring elements. The
second scheme employed the cohesive elements comparable in size
with those of neighboring regular elements. The top and bottom faces
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of the cohesive elementswere tied to the surrounding regular elements by
imposing a surface-based tie constraint. As expected, the first schemewas
computationally more expensive than the second scheme. It was reported
that the accuracy did not depend on the size of the cohesive element.

This situationmay cause a numerical problem inmodeling the pres-
sure distribution near the injection point and the crack tip for a viscos-
ity-dominated hydraulic fracture because the fluid pressure changes
rapidly at these locations. Although cohesive zone elements are easy
to use for crack propagation, the method leads to a mesh dependency
problem since the crack must follow the regular element boundaries.
In order to overcome this problem, an extended finite element method
(XFEM) was introduced and also used for hydraulic fracturing simula-
tions. Lecampion (2009) utilized XFEM by introducing special tip func-
tions to capture the crack tip asymptotic accurately. Both toughness-
dominated and viscosity-dominated conditions were investigated; a
difficulty was encountered in simulating large toughness and small vis-
cosity conditionswhen the fracture was driven by a very small pressure
gradient. In addition to FEM based approaches, meshless techniques are
also developed for fluid-driven fracture such as immersed particle
method (Rabczuk et al., 2010a). In this technique, structure and fluid
particles are coupled by using a master-slave scheme and fluid is
allowed to flow through openings between crack surfaces.

As opposed to the aforementioned studies that are mainly based on
classical continuum mechanics, the hydraulic fracturing phenomenon
can also be analyzed by using peridynamics (Silling, 2000), which is a
non-local continuum mechanics approach. Peridynamics removes the
difficulties that were observed in earlier studies, such as mesh depen-
dency, unphysical singularities, and selection of a suitable failure criteri-
on.Moreover, the inherent characteristic of peridynamics permits crack
propagation in a natural way. Hence, Turner (2013) extended the orig-
inal form of peridynamics by including the fluid pore pressure. Howev-
er, the pore pressure was calculated by using a local approach a priori.
On the other hand, this study presents a fully coupled bond based
peridynamics approach to simultaneously simulate both deformation
and porous flow fields. The current peridynamic formulation has a po-
tential to be used for the analysis of more sophisticated poroelastic
problems including fluid-filled rock fractures as in hydraulic fracturing
and presented in Zhou and Burbey (2014), Li et al. (2014) and
Helmons et al. (2016). Moreover, the formulation can be extended to
be applicable formore complexmaterial behavior by following a similar
procedure explained in Oterkus and Madenci (2014).

2. Peridynamics

A non-local continuum theory, peridynamics, introduced by Silling
(2000) overcomes the aforementioned difficulties arising due to the ex-
istence of discontinuities in the structure. As opposed to classical contin-
uummechanics, amaterial point inside the body can interactwith other
material points within its domain of influence called the “horizon,” H
with radius δ as shown in Fig. 1. The interaction (bond) between two
material points x and x′ is expressed by using a response function, f.
The response function contains all the constitutive information related
to thematerial point. It is assumed that the interactions beyond the ho-
rizon vanish. Although the original application of peridynamics con-
cerns the equation of motion and cracking in an elastic medium, it is
also applicable to other field equations (Gerstle et al., 2008; Oterkus
and Madenci, 2011, 2013, 2014; Oterkus et al., 2013, 2014a,b,c;
Oterkus, 2015; Han et al., 2015, 2016; Kilic and Madenci, 2010; De
Meo et al., 2016; Bobaru and Duangpanya, 2010, 2012; Chen and
Bobaru, 2015). The detailed derivation of peridynamics and its applica-
tions are given in a book by Madenci and Oterkus (2014).

2.1. Peridynamic equation of motion

As opposed to the classical continuummechanics, displacement de-
rivatives do not appear in peridynamic (PD) equations, allowing the

peridynamic formulation to hold everywhere whether or not displace-
ment discontinuities are present. As derived by Silling (2000), the
peridynamic equation of motion at a reference position of x and time t
is given as

ρ xð Þ €u x; tð Þ ¼ ∫
H
f x0−x;u0−uð ÞdV þ b x; tð Þ ð1Þ

in which u is the displacement vector field, b is a prescribed body-force
density field, and ρ is mass density in the reference configuration. The
response function, f, that defines the force between twomaterial points
is written as

f ¼ cs
y0−y
y0−yj j ð2Þ

in which y represents the position of the material point, x in the de-
formed configuration. Also, the stretch, s, between the material points
is defined as

s ¼ y0−yj j− x0−xj j
x0−xj j ð3Þ

As derived by Silling and Askari (2005), the material parameter
(bond constant), c, for an isotropic material can be expressed as

c ¼ 2E

Aδ2
1‐Dð Þ ð4aÞ

c ¼ 9E

πhδ3
2‐Dð Þ ð4bÞ

c ¼ 12E

πδ4
3‐Dð Þ ð4cÞ

in which E represents the Young's modulus of the solid skeleton, and A
and h are the cross-sectional area and thickness, respectively.

2.1.1. Mechanical deformation due to fluid flow
There exists a complete analogy between poroelasticity and

thermoelasticity (Wang, 2000). Therefore, in the presence of a fluid
pressure, the peridynamic equation of motion of a material point at x

Fig. 1. Interaction of a material point with its neighboring points.
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