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A B S T R A C T

We present a dual-horizon peridynamics (DH-PD) formulation for fracture in granular and rock-like materials. In
contrast to discrete crack methods such as XFEM, DH-PD does not require any representation of the crack surface
and criteria to treat complex fracture patterns such as crack branching and coalescence. The crack path is the
natural outcome of the simulation. In this manuscript, a new penalty method to model the contact for
compressive fractures and constraining the penetration conditions is developed. The new method is applied to
several benchmark problems in geomechanics including the four-point shear test, the indirect tensile (Brazilian)
test of rock disks with one or multiple initial cracks. By using an appropriate damping coefficient, the quasi-static
solution for rock failure is obtained when the dynamic formulation is used. A good agreement is obtained
between the results given by DH-PD and those by the experiments.

1. Introduction

The prediction of fracture in rock and rock-like materials is still
challenging due to the complicated behavior of those materials which
include anisotropy, cracks, pores, pre-existing joints and faults, to name
a few. Dealing with complex fracture patterns and predicting the
strength of rock materials is of great importance for numerous
engineering applications. In order to determine the rock fracture-
toughness for example, the Brazilian splitting test is commonly adopted
(Guo et al., 1993). However, besides advances in computational
methods for fracture, there is still an urgent need for reliable computa-
tional methods which can handle the complex fracture behavior of rock.

The numerical modeling of fracture patterns in rock has been an
interesting and active field in recent years since modeling can provide
complementary guidance, quantitative assessment and predictive in-
formation which can not be achieved by traditional empirical ways
alone. A wide variety of methods have been proposed in the past as
outlined in recent surveys (Jing, 2003). These methods are classified
into the family of continuum approaches, discrete crack approaches and
discontinuum approaches according to their capability in simulating
the mechanical behavior of the problem. Discontinuum approaches
such as the discrete element method (DEM) and discontinuous defor-
mation analysis (DDA) (Shi and Goodman, 1985; Zhu et al., 2015) are
effective in approximating discontinuous system such as fractured rock
masses. The most popular continuous methods to fracture is probably
the finite element method (FEM) which employs regularization techni-
ques such as the screened Poisson equation in order to restore the well-

posedness of the boundary value problem (Areias et al., 2016). Popular
discrete fracture approaches include the extended finite element
method (XFEM) (Belytschko and Black, 1999; Moes et al., 1999),
numerical manifold method (NMM), efficient remeshing techniques
(Areias et al., 2013, 2015) and certain meshless methods (Amiri et al.,
2014; Rabczuk and Belytschko, 2004a; Zhuang and Augarde, 2010).
While most of those methods have been applied outside the area of
geomechanics, there are some interesting extensions of those method to
model fracture in geological materials. The numerical manifold method
has been used to model the failure of rock slope (Zhang et al., 2007).
Wu et al. (2013) modeled the cracking processes of rectangular rock
mass under uniaxial compression with the enriched numerical manifold
method. The fracture propagation modeled by finite element method
often heavily depends on the mesh alignment, where other techniques
such as continuous damage method, or adaptive mesh refinement or
cohesive zone method (Elices et al., 2002) are required.

Apart from these conventional methods aforementioned, multiscale
methods (Yang et al., 2015) and fine-scale approaches based on e.g.
molecular dynamics (MD) (Budarapu et al., 2014, 2015) are adopted to
model fractures. Yang et al. (2015) combined the reproducing kernel
particle method and molecular static approach to model static crack
growth. Budarapu et al. (2014) proposed an adaptive atomistic-
continuum numerical method for quasi-static crack growth. The con-
tinuum region is modeled with the phantom node method while the
crack tip region is described by an MD approach. Another ‘unconven-
tial’ approach to fracture is Peridynamics (PD) which shows similarities
to MD and also certain meshfree approaches. PD has recently attracted
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broad interests since crack nucleation and propagation is the natural
outcome of the simulation. In contrast to conventional methods such as
XFEM, it does not require any description of the crack topology and no
cracking criterion which determines the direction of fracture propaga-
tion. The cracking criterion is incorporated into the PD theory. In PD,
the equation of motion is formulated in an integral form rather than the
partial differential form. The material point interacts with other
material points in its horizon, a domain associated to the point. The
horizon is often represented by circular area (2D) or spherical region
(3D) with a radius. There are mainly 3 types of PD formulations, i.e.
bond based peridynamics (BB-PD) (Silling, 2000), ordinary state based
peridynamics (OSB-PD) and non-ordinary state based peridynamics
(NOSB-PD). In BB-PD, the bonds act like independent springs. One
limitation of BB-PD is that only the isotropic material with Poisson's
ratio of 1/3 in 2D or 1/4 in 3D can be modeled. In order to eliminate the
Poisson's ratio restriction, the state based peridynamics (Silling et al.,
2007) is proposed, where “state” means the bond deformation depends
not only on the deformation of the bond itself, but also on collective
deformation of other bonds. The SB-PD was extended into two types,
namely the OSB-PD and the NOSB-PD. NOSB-PD is capable of simulat-
ing the material with advanced constitute models (Foster et al., 2010).
In addition, in order to improve the efficiency of peridynamics in
fracture modeling, much work was performed on the coupling of
peridynamics with the continuum methods (Lubineau et al., 2012).
The coupling method enables to model the fracture domain with PD
while other domain modeled with continuum method. In this method,
the PD is discretized with finite element instead of particles, and the
local integration matrix is assembled.

In this paper, the dual-horizon peridynamics (DH-PD) method (Ren
et al., 2016a) is extended and applied for analyzing crack propagation
in rock. The key novelty is that it can capture complex fracture
including micro-cracking, etc. more naturally as pointed out in the
previous paragraph. In contrast to the traditional PD approach, DH-PD
allows varying the horizon sizes based on the material point's volume
and the arrangement of nearby particles and is therefore computation-
ally cheaper. The derivation of the current peridynamics is based on the
Newton's third law, and other techniques such as Taylor expansion and
variational calculus are not required. The conservations of momentum,
angular momentum and energy are naturally satisfied. In order to
explore the potential of DH-PD in quasi-static crack simulation, the
artificial damping force is added in the governing equation. In addition,
a simple contact algorithm based on the non-linear damping contact
model is used to account for compressive load conditions. The bucket
search algorithm is employed to identify contact between particles with
high efficiency.

This paper is structured as follows. In Section 2, DH-PD is described
in detail. In Section 3, we present a penalty method to take into account
the contact phenomenon in peridynamics. In Section 4, the artificial
damping coefficient is introduced to enhance the quasi-static simulation
using peridynamics. In Section 5, three numerical examples including
the four-point shear test, the square with multiple cracks and the
Brazilian splitting test are presented to validate the method. Finally, we
conclude the findings in this study and discuss the issues need to be
addressed for future development.

2. Review of peridynamics

Consider a solid in the initial and current configuration as shown in
Fig. 1. Let x and x′be the material coordinates in initial configuration
Ω0; and y≔y(x,t) and y′≔y(x′,t)are the spatial coordinates in the
current configuration Ωt for x and x′, respectively; ξ≔x′−x is initial
bond vector, the relative distance vector between x and x′; u≔u(x,t)
and u′≔u(x′,t) are the displacement vectors for x and x′, respectively;
η≔u′−u is the relative displacement vector for bond ξ; y⟨ξ⟩≔y(x′,t)
−y(x,t)=ξ+η is the current bond vector for bond ξ. Since the bond ξ
starts from x to x′, an alias x x′ is used to denote ξ. Obviously, x′x is in

opposite direction of x x′. Let η ξf f≔ ( , )xx xx′ ′ denote the force vector
density acting on point x due to bond x x′; based on Newton's third law,
x′ undertakes a reaction force f− xx′.

As the peridynamics with constant horizon can be viewed as a
special case of the DH-PD (Ren et al., 2016a), we here mainly focus on
the dual-horizon peridynamics. The horizon for any point x in
peridynamics is defined as

H δx x x= { | − ≤ }x x
′ ′ (1)

where ∥⋅∥ denotes the Euclidean distance and δx is particle x’s horizon
radius. Any point x′ in Hx forms bond x x′. In this sense, the horizon Hx

is the union of all bonds starting from x. The dual-horizon is defined as
the dual part of horizon

H Hx x= { | ∈ }x x
′ ′

′ (2)

Any point x′ in Hx
′ forms dual-bond x′x. In this sense, the dual-horizon

Hx
′ is the union of all bonds starting from x′. One particle's bond is

another particle's dual-bond, and vice-verse.
For any point x with density ρ and associated volume ΔV x, it mainly

undertakes three types of forces: (a) the inertia force ρ t Vu ẍ ( , )Δ x, (b)
body force b(x,t)ΔV x, and (c) internal forces. The internal forces
comprise of two parts: the direct forces from Hx, and the reaction forces
from Hx

′ . Combining all forces for particle x leads to the equation of
motion for dual-horizon peridynamics,

∑ ∑η ξ η ξρ t V V tu x f f b ẍ ( , ) = ( , )Δ − (− , − )Δ + ( , )
H H

xx x x x x
x x

′ ′
′

′ ′

or integral form

∫ ∫η ξ η ξρ t dV dV tu x f f b ẍ ( , ) = ( , ) − (− , − ) + ( , ).
H H

xx x x x x
x x

′ ′ ′ ′ ′

When all horizons are constant, H H=x x
′ leads to the traditional

horizon-constant peridynamics.
For bond-based peridynamics, the bond force is

η ξ
η ξ

C δ s Hf x= ( )⋅ ⋅ +
+

, ∀ ∈ ,xx x xx x
′

′ ′

η ξ
η ξ

C δ s Hf x= ( )⋅ ⋅ −( + )
+

, ∀ ∈ ,x x x xx x
′ ′

′ ′ ′

where the micro-modulus C(δ) and critical stretch s0(δ) in 3 dimensions
(Silling and Askari, 2005) are given by

C δ E
πδ ν

s δ G
Eδ

( ) = 3
(1−2 )

, ( ) = 5
6

,4 0
0

(3)

where E and ν are the elastic modulus and Poisson ratio, G0 is the
critical energy release rate. An auxiliary scalar μ is used to denote the
damage state of a bond, i.e. broken bond (μ=0) and unbroken bond
(μ=1). For BB-PD, when the bond stretch reached the critical stretch
s0(δ), μ is set to 0 irreversibly. The damage for a material point x is
calculated by

Fig. 1. The configuration for deformed body.
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