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A B S T R A C T

This paper revisits the problem of computational modelling of a fluid-driven fracture propagating in a permeable
porous medium using zero-thickness flow cohesive interface elements. Both cases of continuous and dis-
continuous pressure field across the fractures are implemented in a unified formulation. The paper provides
computational aspects of hydraulic fracture modelling such as mesh generation, execution time, convergence
and numerical integration issues. We show that Newton-Cotes quadrature must be used for quadratic flow co-
hesive interface elements at least for the presented problems. Our simulations exhibit the so-called intermittent
crack tip advancement as recently confirmed in the literature. This paper is addressed to researchers who would
like to have a quick working implementation of the zero-thickness flow cohesive interface elements for simu-
lating hydraulic fracturing processes with finite elements.

1. Introduction

Natural gas production from hydrocarbon-rich shale formations,
known as shale gas, is one of the most rapidly expanding trends in
onshore domestic oil and gas exploration and production today.
Hydraulic fracturing (HF) or fracking is a common technique for en-
hancing hydrocarbon production since the late 1940s because of the
low permeability of these formations and the low conductivity of the
natural fracture networks (Adachi et al., 2007). Hydraulic fracturing
can be broadly defined as the process by which a fracture initiates and
propagates, in a compressively prestressed solid media (usually sedi-
mentary rocks) due to the injection of a highly pressurised fluid. There
is no existing reliable method to accurately measure fracture geometries
during and after a HF treatment. Therefore, modelling and numerical
simulations of the HF process play a vital role in the design and control
of this technique.

During the early period of hydraulic fracturing two dimensional
(2D) models with simplified geometries (e.g. KGD and PKN models)
were proposed (Geertsma and de Klerk, 1969; Khristianovic and
Zheltov, 1955; Nordgren, 1972; Perkins and Kern, 1961) to predict the
shape and size of a hydraulic fracture based on properties of the rock

and the fluid, the pumping parameters and the in situ stresses. Recent
works along this line deal with the non-dimensional analysis of hy-
draulic fractures where different propagation regimes were discovered
see Adachi and Detournay (2008), Bunger et al. (2005) among others.
These analytical solutions prove to be extremely useful in the ver-
ification of numerical models.

There are a plethora of numerical methods developed to model
hydraulic fractures ranging from classical methods such as finite ele-
ment methods (FEMs), boundary element methods (BEMs), meshfree
methods (Li et al., 2016; Nguyen et al., 2016), discrete element methods
(DEMs) to recent techniques such as phase field modelling e.g. (Mikelić
et al., 2015) and peridynamics (Oterkus et al., 2017). In the FEM
community one can cite the cohesive interface elements (Boone and
Ingraffea, 1990; Carrier and Granet, 2012; Chen et al., 2009; Guiducci
et al., 2002; Papanastasiou, 1997; Segura and Carol, 2008a,b), the
partition of unity methods (or XFEM) (de Borst et al., 2006; Gordeliy
and Peirce, 2013; Mohammadnejad and Khoei, 2013; Remij et al.,
2015a,b) and adaptive remeshing techniques (Fu et al., 2013; Schrefler
et al., 2006). It is interestingly surprising to note that the aforemen-
tioned XFEM papers only solve problems with very simple crack geo-
metries (most often a horizontal crack) even though XFEM is flexible to
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deal with complex crack patterns. To the best of the authors' knowledge
only Fu et al. (2013) presented simulations with complex cracks using
adaptive FEM and finite volume method for the fracturing fluid. The
dominant fracture model in the FEM community is cohesive zone
models (Barenblatt, 1962; Dugdale, 1960) as it removes the crack tip
singularity of linear elastic fracture mechanics (LEFM). Benefits of FEM
for HF simulations are its ability to deal with plastic deformation,
poroelastic effects and heterogeneities.

Usually in hydraulic fracture simulators the rock formation is as-
sumed to be homogeneous isotropic linear elastic (Adachi et al., 2007)
and thus a BEM discretisation constitutes a very efficient method as
only the boundary of the domain is discretised. Furthermore BEM is
known to yield accurate results for LEFM which is the most commonly
adopted fracture theory in hydraulic fracture codes. Typical BEM
models for HF processes can be found in McClure and Horne (2014),
Shen et al. (2013), Sousa et al. (1993), Wu and Olson (2014), Zhang
et al. (2007), among others. As BEM was used the rock formation was
restricted to (isotropic) linear elastic. However very complex crack
patterns including the interaction of hydraulic fractures and existing
natural ones can be handled efficiently e.g., McClure and Horne (2014).
In the DEM community, the ITASCA FLAC and PFC2D codes have been
widely adopted (Al-Busaidi et al., 2005; Bruno et al., 2001). The main
advantage of DEM lies in the ability to handle complex crack patterns,
to model fluid flow in both the pores and the fractures, and to deal with
the fluid lag phenomenon as there are no ‘cracks' in DEM (Shimizu
et al., 2011). And the disadvantages lie probably in the intensive, time-
consuming calibration process to obtain the required material con-
stants.

In this paper we revisit the cohesive interface elements which were
presented in Guiducci et al. (2002). The referred paper was too short to
provide practically useful details and did not deal with hydraulic
fracture problems. The porous medium is modelled using the well
known u−p formulation that is based on Biot's poroelasticity theory
(Biot, 1941) and the hydraulic fractures of which behaviour follows the
cohesive zone theory (Barenblatt, 1962; Dugdale, 1960) are modelled
with triple-noded interface elements. The mid-side nodes of these in-
terface elements are used to model the longitudinal flow of the frac-
turing fluid. Our model employs a master-slave method to enforce the
continuity of the pressure field across a fracture (if needed) whereas
Lagrange multipliers were used (Carrier and Granet, 2012). The master-
slave method was also utilised in Centeno Lobäo et al. (2010), for a
horizontal crack, but a staggered solver was used. Herein, a monolithic
solver where the displacements, the pore pressure and the fracturing
fluid pressure are solved simultaneously. Besides, our implementation
is generic as it applies to arbitrary crack patterns. Furthermore com-
putational aspects such as (i) how to generate interface elements with
fracturing fluid nodes, (ii) how the interfacial integrals are evaluated,
(iii) performance of Gauss quadrature and Newton-Cotes rule and (iv)
performance of quadratic interface elements in HF simulations, which
are never reported in the open literature, are discussed. Also discussed
are convergence property of the monolithic solver as well as execution
time of HF simulations. We shall show that Newton-Cotes quadrature
must be used for quadratic flow cohesive interface elements at least for
the presented problems. Finally our simulations exhibit the so-called
intermittent crack tip advancement as recently confirmed in Cao et al.
(2017). In this paper, for simplicity, we restrict our investigation to (1)
fully saturated media, (2) isothermal conditions, (3) small deformation,
(4) no fluid-lag, and (5) two dimensions. All assumptions deem to be
reasonable for HF processes except the fluid-lag one which deserves
further comments. The zero fluid-lag assumption is valid if the con-
fining stress is sufficiently large (Adachi and Detournay, 2008). The
literature on modelling HF with fluid-lag is however scarce (Hunsweck
et al., 2013; Lecampion and Detournay, 2007).

The remainder of the paper is organised as follows. The governing
equations of the problem of fluid-driven fractures in porous media are
given in Section 2 followed by Section 3 which is devoted to the

corresponding weak forms. Finite element discretisation and discrete
equations are presented in Section 4. Solution of these discrete equa-
tions is treated in Section 5, followed by implementation aspects pre-
sented in Section 6. Benchmark examples are provided in Section 7.

2. Fluid-driven fractures in porous media: governing equations

Hydraulic fracturing or more general fluid-driven fractures in
porous media is a complex phenomenon which couple different phy-
sical processes. They include (i) flow of the fracturing fluid in the
fractures, (ii) flow of the pore fluid in the porous medium, and (iii)
deformation of the porous medium (including fracture initiation and
propagation). In this paper, for simplicity, we confine to (1) fully sa-
turated media, (2) isothermal condition, (3) small deformation, (4) no
fluid-lag, and (5) two dimensions. We refer to Fig. 1 for a graphical
illustration for the problem under investigation. The Biot's theory (Biot,
1941) is adopted to model the porous media and cohesive zone model
(Barenblatt, 1962; Dugdale, 1960) is used to describe the fracture be-
haviour.

2.1. Deformation of porous media

The fully saturated porous medium is modelled as a two-phase
system, where the pores of the solid skeleton are fully filled with a
single phase fluid, refer to Fig. 1. The problem is formulated in terms of
the solid displacements u ∈ℝ3 and the pore fluid pressure pw ∈ℝ, that is
the well known u−p formulation is adopted. The following gradient
and divergence operators used in subsequent developments are con-
veniently introduced ∇ = ∂

∂f ef
x ii

, and ∇⋅ = =∂
∂ uu u

x i i,
i
i

where the indices i
run over the spatial directions, and they can be either x,y, and z, or 1,2,
and 3. The Einstein's summation convention is applied by assuming
summation over each pair of repeated indices.

In low-frequency ranges, the relative acceleration of the fluid phase
with respect to the solid phase is negligible when compared with the
acceleration of the solid phase. In this case, conservation of the linear
momentum of the porous media domain Ω is described by the following
equation

∇⋅ + − =σ ρ ρb u 0̈ (1)

where b is the body force, ü denotes the acceleration vector of the solid;
σ is the total stress tensor; ρ is the density of the porous medium which
is given by

= − +ρ n ρ nρ(1 ) s w (2)

where n is the porosity defined as the ratio of pore space to the total
volume1; ρs and ρw are the intrinsic densities of the solid and the fluid,
respectively.

Fig. 1. A porous medium with a fluid-filled crack.

1 In most unconsolidated formation, porosity depends upon the grain size distribution;
not on the absolute size of the grain itself.
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