Accepted Manuscript

Influence of cyclic wetting and drying on physical and dynamic compressive properties of sandstone

Zilong Zhou, Xin Cai, Lu Chen, Wenzhuo Cao, Yuan Zhao, Cheng Xiong

PII: S0013-7952(17)30086-8

DOI: doi:10.1016/j.enggeo.2017.01.017

Reference: ENGEO 4468

To appear in: Engineering Geology

Received date: 24 July 2016 Revised date: 17 December 2016 Accepted date: 14 January 2017

Please cite this article as: Zhou, Zilong, Cai, Xin, Chen, Lu, Cao, Wenzhuo, Zhao, Yuan, Xiong, Cheng, Influence of cyclic wetting and drying on physical and dynamic compressive properties of sandstone, *Engineering Geology* (2017), doi:10.1016/j.enggeo.2017.01.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Influence of cyclic wetting and drying on physical and

dynamic compressive properties of sandstone

Zilong Zhou¹, Xin Cai¹, Lu Chen¹, Wenzhuo Cao², Yuan Zhao¹, Cheng Xiong¹

¹ School of Resources and Safety Engineering, Central South University, Changsha, Hunan, P.R.

China

² Department of Earth Science and Engineering, Royal School of Mines, Imperial College, London

SW7 2AZ, UK

Corresponding author: Xin Cai, E-mail: xincai@csu.edu.cn

Abstract: The cyclic wetting-drying phenomenon, which is a part of weathering

processes, plays a vitally important role in affecting the properties of rock materials.

To investigate the effect of wetting and drying cycles on the physical and dynamic

compressive properties of rocks, some essential physical properties of sandstone

specimens including density, water absorption, porosity, P-wave velocity and slake

durability index (SDI) were measured after every 10 cycles (for a total of 50 cycles).

Dynamic compressive tests were conducted using a modified split Hopkinson pressure

bar (SHPB) technique for rock specimens. Laboratory tests results showed that, with

the increase of wetting and drying cycles, the porosity and water absorption of rock

increases while the density, P-wave velocity, SDI, dynamic compressive strength and

elastic modulus decrease. In addition, the surface microscopic morphological

characteristics of specimens were examined by scanning electron microscope (SEM).

It was observed that the micro-cracks grow and expand in rock after cyclic

wetting-drying treatments, which is the main cause of the reduction in dynamic

compressive strength. Based on experimental results, an empirical equation was

established to describe the effect of strain rate and number of wetting and drying

cycles on the dynamic compressive strength of rock materials.

Keywords: sandstone, cyclic wetting and drying, physical properties, SHPB, rock

dynamics

Download English Version:

https://daneshyari.com/en/article/5787585

Download Persian Version:

https://daneshyari.com/article/5787585

<u>Daneshyari.com</u>