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a b s t r a c t

Time reversal in quantum or classical systems described by an Hermitian Hamiltonian is a physically
allowed process, which requires in principle inverting the sign of the Hamiltonian. Here we consider
the problem of time reversal of a subsystem of discrete states coupled to an external environment char-
acterized by a continuum of states, into which they generally decay. It is shown that, by flipping the
discrete-continuum coupling from an Hermitian to a non-Hermitian interaction, thus resulting in a
non unitary dynamics, time reversal of the subsystem of discrete states can be achieved, while the con-
tinuum of states is not reversed. Exact time reversal requires frequency degeneracy of the discrete states,
or large frequency mismatch among the discrete states as compared to the strength of indirect coupling
mediated by the continuum. Interestingly, periodic and frequent switch of the discrete-continuum cou-
pling results in a frozen dynamics of the subsystem of discrete states.

� 2017 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

1. Introduction

The physics of open quantum and classical systems is of great
relevance in different areas of science [1–13] ranging from atomic
and molecular physics [5,7,8] to nuclear physics [1,3,4,6], dissipa-
tive systems driven out of equilibrium and quantum thermody-
namics [14,15], quantum computing [7,16,17], transport in
nanoscale and mesoscopic solid state devices [9,10,18–24], optics
and photonics [25–29], and transport in biological structures
[30–32]. More recently, non-Hermitian models have been also
introduced in ab initio theories to provide complex extensions of
quantum mechanics [33–39]. Studies of open quantum systems
date back to some pioneering theoretical works, notably of
Gamow, Weisskopf-Wigner and Feshbach on nuclear a-decay [1],
spontaneous emission [2], and nuclear reactions [3], are nowadays
of continuous interest in a wide range of different areas of physics.
In a typical situation, a discrete system described by N states is
coupled to an external environment characterized by a continuum
of states, into which they generally decay. An important example if
provided, for instance, by electronic or photonic transport in meso-
scopic or macroscopic cavities with attached wave guides. A simple
approach to describe open systems is to eliminate the continuum
degrees of freedom via Feshbach projection technique or similar
methods [2–6,8,9], leading to an effective non-Hermitian Hamilto-
nian description for the finite-dimensional N subspace of discrete

states. Such an approach turns out to be very effective in predicting
important interference effects between discrete states and the con-
tinuum, such as Fano resonances, the existence of bound states in
the continuum, external mixing of states, nonadiabatic dynamical
transitions near exceptional points, nonlinear effects, etc. (see, for
example, [10–12] and references therein for a comprehensive over-
view). A major question is whether one can time-reverse the
dynamics in the reduced N-dimensional subspace of discrete states.
For example, is it possible to reverse the decay process of an initial
excitation of the N discrete states into the continuum of states, so
as to retrieve the initial excitation in the subspace of discrete
states? The problem of time reversal in systems with many degrees
of freedom is a longstanding one in physics and dates back to the
famous controversy between Loschmidt and Boltzmann about
the second law of thermodynamics and the arrow of time, i.e.
how macroscopic irreversibility can arise even if dynamical equa-
tions of motion are time reversible. In principle, performing time
reversal in an Hamiltonian system would ‘‘simply” require invert-
ing the sign of the Hamiltonian. Quantum or classical reversibility
in presence of various perturbations has been actively studied in
recent years and is now described through the so-called Loschmidt
echo [40–42]. In particular, time reversal dynamics has been
experimentally demonstrated in a wide variety of quantum and
classical systems, including spin systems [43], matter waves
[44,45], acoustic [46], electromagnetic [47] and water waves
[48]. Reversing the sign of the Hamiltonian, however, is not a sim-
ple task, especially when infinite degrees of freedom like those of a
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continuum of states are involved and perturbations can rapidly
deteriorate the Loschmidt echo.

In this work, it is suggested that reversing the dynamics of a
discrete system coupled to a continuum can be achieved by flip-
ping the discrete-continuum interaction from an Hermitian to a
non-Hermitian coupling. Physical models and practical implemen-
tations of non-Hermitian couplings have been considered in some
recent works [49–55], especially in the context of tight-binding
lattice models. A non-Hermitian coupling does not generally con-
serve the probability of the discrete-continuum system, since
another hidden reservoir is involved in the dynamics from which
energy and/or particles can be fed or extracted. As far as time
reversal dynamics is concerned, flipping the coupling of the
discrete states with the continuum from an Hermitian to a non-
Hermitian one can reverse, under certain conditions, the dynamics
of the discrete states, but not the one of the continuum which can
take energy from the hidden reservoir. Remarkably, periodic
flipping of the coupling over a short time scale can result
in a frozen dynamics of the N discrete states, but not of the
continuum of states. As an example, we discuss time reversal
and frozen dynamics based on non-Hermitian flip in a multilevel
Fano-Anderson model describing the coupling of N sites to a tight-
binding continuum.

2. Time reversal based on non-Hermitian flip

2.1. Basic model and effective Hamiltonian

Let us consider a discrete system of N states jani with frequen-
cies xn (n ¼ 1;2; . . . ;N) which are coupled to an external environ-
ment characterized by a continuum of states jxiwith frequencyx.
The Hamiltonian of the full system is described by the multilevel
Fano-Anderson (or Friedrichs-Lee) Hamiltonian [56]

bH ¼
X
n

xnjanihanj þ
Z

dxxjxihxj þ f ðtÞ
X
n

gnðxÞjanihxj þ g�
nðxÞjxihanj

� �
;

ð1Þ

where gnðxÞ is the spectral amplitude that describes the coupling of
the discrete state jani with the continuum jxi and f ðtÞ defines the
coupling strength, which is generally assumed to be time depen-

dent. The Hamiltonian bH is Hermitian provided that f ðtÞ is real. In
this case the dynamics is unitary and the norm (probability) is con-
served. However, rather generally we allow f ðtÞ to become complex,
corresponding to a non-Hermitian discrete-continuum coupling
and a non-unitary dynamics. It should be noted that a non-
Hermitian coupling requires a hidden reservoir into which the
discrete-continuum states can transfer particles/energy excitation,
thus explaining the non-unitary dynamics and breakdown of popu-
lation conservation. Non-Hermitian coupling by means of a com-
plex (imaginary) function f ðtÞ is introduced here at a
phenomenological level, i.e. without a detailed description of the
‘‘hidden” reservoir which is eliminated from the dynamics and that
makes sense of an effective non-Hermitian discrete-continuum
interaction. Indeed, the problem of time reversal of discrete states
discussed in the following and based on the weak-coupling approx-
imation does not require a detailed microscopic description of the
non-Hermitian interaction. For example, photonic transport in cou-
pled waveguides or optical resonators is often described in the
framework of the Fano-Anderson model [57,58]. Here the hidden
reservoir is provided by the pumped atomic medium that provides
instantaneous spatial optical gain and loss regions in the system
and that makes the dynamics effectively non-Hermitian. In particu-
lar, an imaginary (non-Hermitian) coupling of wave guides can be
implemented using the methods discussed in Refs. [50,54,59]. Sim-
ilarly, in non-Hermitian models of mesoscopic quantum transport

imaginary potentials that act as source and sink for carriers are phe-
nomenologically introduced, without the need for a full description
of the entire reservoir dynamics [60,61].

If the state vector of the system jwðtÞi is expanded on the
discrete-continuum basis as

jwðtÞi ¼
X
n

cnðtÞjani þ
Z

dxcðx; tÞjxi; ð2Þ

from the Schrödinger equation with �h ¼ 1 one obtains the following
evolution equations for the amplitudes cnðtÞ and cðx; tÞ

i
dcn
dt

¼ xncnðtÞ þ f ðtÞ
Z

dxgnðxÞcðx; tÞ; ð3Þ

i
dc
dt

¼ xcðx; tÞ þ f ðtÞ
X
n

g�
nðxÞcnðtÞ: ð4Þ

Let us assume that at initial time the continuum of states is empty,
i.e. cðx; 0Þ ¼ 0. The formal integration of Eq. (4) yields

cðx; tÞ ¼ �i
X
n

g�
nðxÞ

Z t

0
dnf ðnÞcnðnÞ exp½�ixðt � nÞ�: ð5Þ

After setting cnðtÞ ¼ anðtÞ expð�ixntÞ, substitution of Eq. (5) into (3)
yields the following set of integro-differential equations for the
amplitudes anðtÞ
dan
dt

¼ �f ðtÞ
X
m

Z t

0
dnf ðnÞamðnÞUn;mðt � nÞ expðixnt � ixmnÞ; ð6Þ

where we have introduced the memory functions

Un;mðsÞ �
Z

dxgnðxÞg�
mðxÞ expð�ixsÞ: ð7Þ

The characteristic decay time smem of Un;mðsÞ defines the memory
time of the response function. Following a standard procedure, in
the Weisskopf-Wigner (markovian) approximation, corresponding
to a weak coupling gnðxÞ ! 0, a broad and unstructured contin-
uum, and a small change of f ðtÞ over the memory time smem, the
integro-differential Eqs. (6) can be replaced by the following set
of differential equations

dan
dt

¼ �f 2ðtÞ
X
m

Dn;mamðtÞ exp½iðxn �xmÞt�; ð8Þ

where we have set

Dn;m ¼
Z 1

0
dsUn;mðsÞ expðixmsÞ

¼ pgnðxmÞg�
mðxmÞ � iP

Z
dx

gnðxÞg�
mðxÞ

x�xm
: ð9Þ

Eq. (8) provides an effective non-Hermitian description of the
dynamics in the subspace of the N discrete states jani, in which
the degrees of freedom of the continuum of states jxi have been
eliminated in the markovian approximation. For an Hermitian and

time-independent Hamiltonian bH, i.e. for f ðtÞ ¼ 1, the real and
imaginary parts of the eigenvalues kn of the effective coupling
matrix D ¼ Dn;m

� �
determine the decay rates and frequency shifts

of the resonance modes. Such an effective non-Hermitian descrip-
tion is able to capture some important effects such as the existence
of bound (trapping) states inside the continuum and Fano reso-
nances arising from the interference of the discrete states via the
continuum. It should be noticed that the above analysis is based
on the rather standard markovian approximation, i.e. the solutions
are obtained by assuming a weak coupling between the discrete
states and the continuum. This means that the validity of the results
discussed in the next sections, i.e. time reversal and frozen dynam-
ics by non-Hermitian flip, is strictly speaking restricted to the weak
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