Article

Physics & Astronomy

A new ferromagnetic superconductor: CsEuFe₄As₄

Yi Liu · Ya-Bin Liu · Qian Chen · Zhang-Tu Tang · Wen-He Jiao · Qian Tao · Zhu-An Xu · Guang-Han Cao

Received: 30 May 2016/Revised: 17 June 2016/Accepted: 17 June 2016 © Science China Press and Springer-Verlag Berlin Heidelberg 2016

Abstract Superconductivity (SC) and ferromagnetism (FM) are in general antagonistic, which makes their coexistence very rare. Following our recent discovery of robust coexistence of SC and FM in RbEuFe₄As₄ (Liu et al. in Phys Rev B 93:214503, 2016), here we report another example of such a coexistence in its sister compound CsEuFe₄As₄, synthesized for the first time. The new material exhibits bulk SC at 35.2 K and Eu²⁺-spin ferromagnetic ordering at 15.5 K, demonstrating that it is a new robust ferromagnetic superconductor.

Keywords Superconductivity · Ferromagnetism · Iron-based superconductors

1 Introduction

The search for ferromagnetic superconductors (FMSCs) can trace back to before the 1960s [1]. Owing to the antagonistic nature of superconductivity (SC) and ferromagnetism (FM) [1, 2], SC rarely coexists with FM, even

Y. Liu · Y.-B. Liu · Q. Chen · Z.-T. Tang · Q. Tao · Z.-A. Xu ·

G.-H. Cao

Collaborative Innovation Centre of Advanced Microstructures, Nanjing 210093, China

for that SC and FM emerge in different subsystems of a complex crystalline lattice. It was not until late 1970s that both SC and FM were observed in ErRh₄B₄, but SC disappears when the Er magnetic ordering enters [3]. Since then, a few "conventional magnetic superconductors" were discovered [4], in which SC and local-moment FM (or more frequently, other types of magnetic orderings with ferromagnetic components) casually coexist in certain temperature and magnetic-field regimes. Such materials were earlier called FMSCs [2], and this terminology was also employed for the uranium compounds UGe₂, URuGe and UCoGe that are superconducting well below their Curie temperatures [5]. Here we adopt the classification [6], which gives another terminology, "superconducting ferromagnet", for the case that the superconducting transition temperature $T_{\rm sc}$ is lower than the Curie temperature T_{Curie} . Whilst FMSC is reserved for the scenario of $T_{\rm sc} > T_{\rm Curie}$. Note that, in the U-based superconducting ferromagnets, SC and FM share the same type of electrons, and the SC is widely believed to be in a spin-triplet state. For a spin-singlet superconductor, however, SC is more easily destroyed by the strong exchange fields in a ferromagnet. At the same time, a spin-singlet s-wave superconducting state does not allow a local-moment FM via Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions in a single-band system [7]. Therefore, it seems impossible for a single material to host both local-moment FM and spin-singlet SC (FM + SC).

However, the FM + SC-like phenomenon was observed [8, 9], and recently confirmed by X-ray resonant magnetic scattering [10] and neutron scattering [11], in the P-doped EuFe₂As₂ system in which SC emerges at ~26 K followed by ferromagnetic ordering at ~17 K for the Eu²⁺ spins. Similar phenomena were later demonstrated in other doped EuFe₂As₂ systems [12–16]. Nevertheless, strong

Y. Liu · Y.-B. Liu · Q. Chen · Z.-T. Tang · Q. Tao · Z.-A. Xu · G.-H. Cao (\boxtimes)

Department of Physics, Zhejiang University, Hangzhou 310027, China e-mail: ghcao@zju.edu.cn

W.-H. Jiao

Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China

experimental evidence of bulk SC in these doped $EuFe_2As_2$ systems is still lacking. Also there have been debates on the details of Eu-spin ordering [9–11, 17–19].

Very recently, motivated by our previous material design [20] as well as the latest experimental progress [21], we succeeded in synthesizing a new Eu-containing iron arsenide RbEuFe₄As₄ which exhibits bulk SC at $T_{sc} = 36.5$ K and Eu-spin FM at $T_{Curie} = 15$ K [22]. The robustness of both SC and FM indicates a genuine FM + SC state realized. Here we report the second robust FMSC, CsEuFe₄As₄, a sister compound of RbEuFe₄As₄. The new material shows bulk SC at 35.2 K and Eu-spin FM at 15.5 K. An additional anomaly at 5 K is observed, possibly associated with the interplay between SC and FM. Another interesting issue is that the Eu-spin ferromagnetic ordering is of a rare third order, suggesting a strong two-dimensional character of the ferromagnetic transition.

2 Experimental

CsEuFe₄As₄ polycrystalline sample was synthesized by solid-state reactions in a sealed vacuum, with procedures similar to the synthesis of RbEuFe₄As₄ [22]. First, CsAs, EuAs and FeAs were prepared respectively via the reactions of Cs (99.75 %), Eu (99.9 %) and As (99.999 %) pieces with Fe powders (99.999 %). The intermediate products were then ball milled separately for 10 min in a glove box filled with pure Ar (the water and oxygen content is below 1 ppm). Second, the powder of CsAs, EuAs, FeAs and Fe was weighed in a stoichiometric ratio. The mixture was homogenized by grinding, pressed into pellet, and then loaded in an alumina tube which was sealed in a Ta tube by arc welding in argon atmosphere. The welded Ta tube was jacketed in a quartz ampoule filled with Ar gas $(\sim 0.6 \text{ bar } (1 \text{ bar} = 10^5 \text{ Pa}))$, followed by heating the ampoule to 1123-1173 K, holding for 6 h, in a muffle furnace. The sample was quenched after the high-temperature chemical reactions.

Powder X-ray diffraction (XRD) was carried out at room temperature on a PANalytical X-ray diffractometer (Model EMPYREAN) with a monochromatic $CuK_{\alpha 1}$ radiation. To avoid severe preferred orientations, the powder was pressed softly on the sample holder. The lattice parameters and the atomic positions were refined by a Rietveld analysis using a RIETAN-FP software [23]. The electrical and heat-capacity measurements were conducted on a physical property measurement system (PPMS-9, Quantum Design). The electrical resistivity was measured using a standard four-electrode method. The as-prepared CsEuFe₄As₄ pellet was cut into a thin rectangular bar, on which gold wires were attached with silver paint. The Hall coefficient was measured by permutating the voltage and current electrodes under 8 T [24], using a thin-square sample $(2.2 \times 2.0 \times 0.17 \text{ mm}^3)$ with four symmetric electrodes attached. The heat capacity was measured by a thermal relaxation method using a square-shaped sample plate with a total mass of 16.8 mg. The dc magnetization was measured in a magnetic property measurement system (MPMS-5, Quantum Design) using a regular shape sample so that the demagnetization factor can be estimated more precisely.

3 Results and discussion

3.1 Crystal structure

The powder XRD pattern of the CsEuFe₄As₄ sample can be well indexed with a RbCaFe₄As₄-type [21] (1144-type) primitive tetragonal lattice. No evident impurity phase can be identified. Figure 1 shows the Rietveld refinement profile based on the 1144-type structure shown in the inset. The refinement yields a weighted reliable factor R_{wp} of 4.80 % and a "goodness-of-fit" parameter *S* of 1.48, and the resulting crystallographic parameters are tabulated in Table 1.

Isostructural to RbEuFe₄As₄, CsEuFe₄As₄ can be viewed as an intergrowth of CsFe₂As₂ and EuFe₂As₂, thus it is meaningful to compare their crystal structures. The *a* axis is almost the same (within the determination uncertainty) as the average value of those of EuFe₂As₂ [25] and CsFe₂As₂ [26]. In fact, the lattice mismatch between the two 122-type compounds is only 0.4 %, which explains the formation of CsEuFe₄As₄ [20, 21]. However, the *c* axis is 0.010(1) Å larger that the sum of one half of the *c* axes of CsFe₂As₂ and EuFe₂As₂. This result looks abnormal because in general the

Fig. 1 (Color online) Powder X-ray diffraction and its Rietveld refinement profile for $CsEuFe_4As_4$. The inset shows the crystal structure

SCIENCE CHINA PRESS

Download English Version:

https://daneshyari.com/en/article/5788760

Download Persian Version:

https://daneshyari.com/article/5788760

Daneshyari.com