
Review Physics & Astronomy

Transformation optics applied to van der Waals interactions
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Abstract The van der Waals force originates from the

electromagnetic interaction between quantum fluctuation-

induced charges. It is a ubiquitous but subtle force which

plays an important role and has a wide range of applica-

tions in surface related phenomena like adhesion, friction,

and colloidal stability. Calculating the van der Waals force

between closely spaced metallic nanoparticles is very

challenging due to the strong concentration of electro-

magnetic fields at the nanometric gap. Especially, at such a

small length scale, the macroscopic description of the

dielectric properties no longer suffices. The diffuse non-

local nature of the induced surface electrons which are

smeared out near the boundary has to be considered. Here,

we review the recent progress on using three-dimensional

transformation optics to study the van der Waals forces

between closely spaced nanostructures. Through mapping a

seemingly asymmetric system to a more symmetric coun-

terpart, transformation optics enables us to look into the

behavior of van der Waals forces at extreme length scales,

where the effect of nonlocality is found to dramatically

weaken the van der Waals interactions.
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1 Background and Introduction

All physical systems undergo quantum and thermal fluc-

tuations. A nonpolar molecule like helium consisting of

symmetric electron cloud around the nucleus could be

temporarily self-polarized due to random fluctuations,

which results in attractive forces between neutral atoms.

Similarly, the fluctuation of charge density on an elec-

trically neutral surface can randomly generate temporary

surface charges. When two surfaces approach each other,

the charges on one surface induce the opposite charges on

the other. The random fluctuating charges then become

correlated and form negative and positive charge pairs.

The electromagnetic interactions between these instanta-

neously fluctuation-induced charges give rise to an

attractive force between closely spaced surfaces. Such

fluctuation-induced forces have been named differently

such as van der Waals forces [1], London dispersion

forces [2], Casimir–Polder forces [3], and latterly Casimir

[4] (Casimir–Lifshitz [5]) forces. They have the same

physical origin at the fundamental level but the latter two

usually refer to long-range interactions with the retarda-

tion effect (i.e., the speed of light is finite). Since this

review focuses on the forces at the nanoscale, we use the

term of van der Waals forces.

The van der Waals force exists everywhere and is sig-

nificant as long as the separation between surfaces is small

enough. For instance, the attractive pressure acting on two

metallic surfaces of 10 nm separation is comparable with

one atmospheric pressure. The van der Waals force is a

long-range force acting between particles and plays an
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important role in surface related interactions such as sur-

face adhesion [6], friction [7, 8], colloidal stability and

crystallization [9], nanoparticle self-assembly [10], and

supramolecular (viruses, proteins, polymers) interactions.

Remarkably, this is the mechanism for geckos [11, 12],

spiders [13] and flies to stick to walls and climb upside-

down on smooth surfaces. The quantitative calculation of

van der Waals force is of great importance to guide

applications in a broad range of areas such as surface and

colloidal science, nanotechnology and macromolecular

chemistry.

For a very long time, researchers could only deal with

objects with simple geometry such as small molecules and

large macroscopic bodies (e.g., parallel surfaces), where the

van der Waals forces is calculated by asymptotic equations

[1]. For complicated nontrivial geometries, traditional pro-

cedures through summing over the contributions from

infinitesimal elements, such as Hamaker’s method [14] and

the proximity force approximation [15], have been widely

used to estimate the van derWaals interactions [1]. However,

the van der Waals force is inherently a non-additive inter-

action. This fact makes these ‘‘additive’’ methods not valid

for calculating the collective interactions between nontrivial

geometries. With the development of the electromagnetic

field theories, some geometries such as corrugated plates

[16], cylinders [17], spheres [18], edges and tips [19], and

gratings [20] can be analytically studied with special

boundary conditions. Remarkably, Johnson’s team [21, 22]

developed a set of numerical techniques which in principle

can accurately compute Casimir interactions for arbitrary

geometries and materials.

However, for very closely spaced metallic nanostruc-

tures with nanometer scale separations, the calculation of

van der Waals forces is still very challenging. Metals like

gold and silver can support surface plasmons due to the

density oscillations of electrons on the surface when

excited by an external radiation. Due to the heavy mass of

electrons, surface plasmons can have much shorter wave-

lengths than the corresponding external light. The surface

plasmon behavior strongly depends on the profile and the

environment of the surface. Geometrical singularities such

as sharp edges or touching surfaces can result in enormous

field concentrations. When two nanoparticles are brought

into close contact, surface plasmonic fields are strongly

confined at the nanometric gap [23, 24]. These highly

squeezed fields actually dominate the electromagnetic

interactions. To exactly calculate the van der Waals forces

requires an effective way to describe the highly localized

plasmonic fields. In principle, the multipole expansion

method [16–20] and numerical techniques [21, 22] can be

used to describe the scattering properties of such systems.

However, in order to describe the highly localized plas-

monic modes, a large number of multipole moments (and

hence a large reflection matrix) [18, 25] or extremely fine

meshes [26] are required. For instance, in a sphere-plane

configuration with a gap-to-radius ratio of 10-3, several

thousand spherical harmonics need to be considered [25].

This makes the calculations extremely time-consuming.

Moreover, if the small gaps approach sub-nanometer

scales, the classical electrodynamics picturewhich describes

the dielectric response in terms of local parameters fails to

predict the optical properties of metallic surfaces due to the

inherent quantum nature of electrons [27]. The surface

electrons induced by an applied electric field are not located

precisely on the surface but are smeared across the boundary

in a layer whose thickness is comparable to Thomas-Femi

wavelength (about 0.1 nm for typical metals). This so-called

nonlocal effect [28] will alter the van derWaals forces in the

small gap limit. Recently, some researchers gradually rec-

ognize the importance of the nonlocality for the van der

Waals forces at small separations [29–31]. However, con-

sistent results were not obtainedwhen using differentmodels

to describe the nonlocal effect.

Transformation optics offers a feasible route to describing

highly localized electromagnetic fields.Hence, it can be used

as a powerful tool to calculate van der Waals interactions at

the nanometric scale. This review is an overview of the

recent progress on transformation optics applied to van der

Waals calculations between plasmonic nanostructureswhich

are difficult to handle using traditional methods.

2 Casimir–Lifshitz theory for the van der Waals force

calculation

Although the van der Waals force is a quantum phe-

nomenon, the essential part of the calculation turns out to

be a classical electromagnetic problem [4, 5]. Intuitively,

the van der Waals energy between two objects with a

separation of d is calculated by summing over the zero

point energy, �hxn=2, of all the eigenmodes supported by

the system,

EðdÞ ¼
X

n

1

2
�hxn dð Þ �

X

n

1

2
�hxn d ! þ1ð Þ; ð1Þ

where �h is the reduced Planck’s constant and xn the res-

onance frequency of each eigenmode. For two parallel

perfectly conducting mirrors separated by vacuum, the

cavity eigenmodes are given by xkjj;n ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2jj þ np=dð Þ2

q
,

where kjj denotes the parallel component of wave vector

and c is the speed of light in vacuum. Inserting in Eq. (1)

and changing the summation to an integral,
P

p¼TE;TMP
n

1

ð2pÞ2
R
d2kjj, Casimir [4] obtained the attractive pressure

between two conducting mirrors as P ¼ �oEðdÞ=od ¼
��hcp2=240d4. Although Eq. (1) provides an intuitive
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