Accepted Manuscript

Exploring stability of formamidinium lead trihalide for solar cell application

Mingkui Wang

PII: S2095-9273(17)30043-9

DOI: http://dx.doi.org/10.1016/j.scib.2017.01.025

Reference: SCIB 50

To appear in: Science Bulletin

Received Date: 12 October 2016 Revised Date: 20 November 2016 Accepted Date: 28 November 2016

Please cite this article as: M. Wang, Exploring stability of formamidinium lead trihalide for solar cell application, *Science Bulletin* (2017), doi: http://dx.doi.org/10.1016/j.scib.2017.01.025

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Received: 12/10/2016; Revised: 20/11/2016; Accepted: 28/11/2016

Exploring stability of formamidinium lead trihalide for solar cell application

Mingkui Wang a*

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.

E-mail: mingkui.wang@mail.hust.edu.cn

Abstract: Formamidinium lead triiodide (FAPbI₃) is a promising photoactive perovskite for low-cost and efficient solar cells. This article reports on an experimental investigation on the stability of FAPbI₃ by comparison with that of widely-used methylamidinium lead triiodide (MAPbI₃). A hydration of the FAPbI₃ with moisture could be the dominant mechanism for its degradation in air, rather than a common thermal decomposition in the MAPbI₃. This can be mainly contributed to a relatively strong bond formation between formamidinium ions (FA⁺) and I⁻. Consequently, the stability of FAPbI₃ based devices can be greatly enhanced by removal moisture in the surrounding. This conclusion renders FAPbI₃ extremely attractive for stable perovskite solar cells with fine encapsulation.

Keywords: Perovskite; Solar cell; Stability; Cation

1. Introduction

A broad organic-inorganic series of hybrid metal iodide perovskites with the general formulation ABX₃ have been reported for solar cell application, where A is the organic cation such as methylammonium $(CH_3NH_3^+)$ or formamidinium $(HC(NH_2)_2^+)$ at the corner of cubic unit cell, B being a divalent metal (Pb^{2+}, Sn^{2+}) at the body center, and X being an halogen anion (Cl^-, Br^-, Γ) locating at the face center. Following the pioneer work of methylamidinium lead triiodide $(MAPbI_3)$ perovskite

Download English Version:

https://daneshyari.com/en/article/5788905

Download Persian Version:

https://daneshyari.com/article/5788905

<u>Daneshyari.com</u>