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Abstract The investigation of the interplay between

geometry and nonlinearity may open the road to the control

of extreme waves. We study three-dimensional localization

and dispersive shocks in a bent cigar shaped potential by

the nonlinear Schrödinger equation. At high bending and

high nonlinearity, topological trapping is frustrated by the

generation of curved wave-breaking. Four-dimensional

parallel simulations confirm the theoretical model. This

work may contribute to novel devices based on geometri-

cally constrained highly nonlinear dynamics and tests and

analogs of fundamental physical theories in curved space.
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1 Introduction

Lord Rayleigh and others studied the effect of geometry on

wave propagation since early developments of the theory

of sound, for example, in the vibrations of membranes with

different shapes [1]. Geometry changes energy velocity,

wave transformations upon propagation, and various clas-

sical and quantum undulatory phenomena. This effect

occurs in constrained micron-scale propagation and at an

astrophysical scale. Renowned examples include the

Einstein lensing effect [2], the Hawking radiation [3], or

the Unruh effect [4].

Notwithstanding the old history, the link between

geometry and waves is continuously fascinating many

researchers, and is currently driving important applications

as transformation optics [5, 6], curved and twisted

waveguides [5, 7] and analogs of gravity in Bose–Einstein

condensation (BEC) [8, 9] or nonlinear optics [10–13].

Geometry not only changes linear propagation; studies

on solitons in curved manifolds reveal many interesting

phenomena on nonlinear waves [14–19]. Topologically

induced localization is perhaps the most striking [20]:

constraining the wave in extremely deformed regions,

inhibits propagation and traps energy at the largest curva-

ture. We do not know, however, if geometrical localization

can compete with nonlinearity, and the dynamics resulting

from a nonlinear response that overcomes topological

bounds. We may expect that at high nonlinearity shock

waves (SW) arise [21]. Indeed, recent studies in optics and

Bose–Einstein condensation (BEC) [22–27] reveal SW

from singular solutions of the hydrodynamic reduction of

the nonlinear Schroedinger equation (NLS) that are regu-

larized by oscillating wave fronts (‘‘dispersive SW’’,

D-SW); but we do not know the effect of curved space on

DSW. Understanding the way geometry alters highly

nonlinear regimes may allow controlling and engineering

wave-breaking and related phenomena, as super-continuum

generation [28].

The considered problem has a key difficulty: even if the

geometrical localization of the wave-function occurs in a

reduced dimensionality (e.g., a curved surface in a three

dimensional space), when nonlinearity is very effective, the

wave-function spreads over the three-dimensional (3D)

space. We may hence question any treatment based on

nonlinear wave equations with reduced dimensionality, and
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have to test theoretical predictions by using 3D

simulations.

In this article, we investigate the frustration of geo-

metrical localization due to a shock-wave generated by a

extreme defocusing nonlinearity. We study this effect by

one-dimensional (1D) theoretical analysis and 3D?1 sim-

ulations of nonlinear Schrödinger, or Gross-Pitaevskii

(GP), equation. We report the first analysis of DSW in

curved potentials.

2 The model

The considered adimensionalized three-dimensional non-

linear Schrödinger, or GP, equation is

iWt ¼ �r2Wþ V3DðrÞW� vjWj2W: ð1Þ

In Eq. (1), v ¼ �1 determines the sign of the nonlinearity,

and N ¼
R
jWj2d3r is the number of atoms. We consider a

curved potential, sketched in Fig. 1,

V3D ¼ V1ðq1Þ þ V?ðq2; q3Þ; ð2Þ

where q1 ¼ q is the longitudinal coordinate along the arc,

and q2;3 are the transverse coordinates [20]. V? determines

the transverse confinement along an arbitrary curve, whose

curvilinear coordinate is given by q. V1ðq1Þ is a weak

longitudinal trapping potential, whose effect becomes

negligible for strong curvature, as detailed below.

Specifically, we have a parabolic potential

V?ðq2; q3Þ ¼ w q2
2 þ q2

3

� �
; ð3Þ

V1ðq1Þ ¼ w1q
2
1; ð4Þ

with w � w1. Being k2 ¼ w=w1, the 1D reduction holds

true as k2 ! 1 [20], letting

Wðq1; q2; q3Þ ¼ l?w?ðq2; q3Þwðq1Þ exp �iE?tð Þ; ð5Þ

with
R
jw?j

2ðq2; q3Þdq2dq3 ¼ 1, and ET the transverse

eigenvalue. The transverse localization length is

l�2
T ¼

Z
jw?ðq2; q3Þj4dq2dq3; ð6Þ

and the normalization condition holds
Z

jwðqÞj2dq ¼ Nl�2
? � P: ð7Þ

The linear ground state of the parabolic potential is w? ¼ffiffiffiffiffiffiffiffiffiffiffiffi
2=pl2T

p
exp �q2

2=l
2
T � q2

3=l
2
T

� �
with lT ¼ ð4=wÞ1=4

, and

ET ¼ 2
ffiffiffiffi
w

p
. The resulting 1D GP equation with

geometrical potential VG is given by

iotw ¼ �o2
qwþ VðqÞw� vjwj2w; ð8Þ

where V ¼ V1 þ VG, and VG is expressed in terms of the

local curvature K(q):

VGðqÞ ¼ �K2ðqÞ
4

: ð9Þ

VGðqÞ is a an effective potential that arise from the 1D

reduction of the original 3D Eq. (1) [20]. The bound state

is determined by

Fig. 1 (Color online) a Potential profile for the piecewise case (dashed, R ¼ 0:5) and for the parabolic cases (y ¼ kx2 with R ¼ 1=2k ¼ 1; 2; 3); b
geometrical potential VG for the cases in panel (a); c shape of the bound state for the parabolic potential for various powers (PR goes from 10�3

to 2.6); d nonlinear eigenvalue versus power (left axis), and localization length (right axis), w1R
2 ¼ 6:25 � 10�6
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