Article

Comparing simulated atmospheric carbon dioxide concentration with GOSAT retrievals

Huifang Zhang · Baozhang Chen · Guang Xu · Jianwu Yan · Mingliang Che · Jing Chen · Shifeng Fang · Xiaofeng Lin · Shaobo Sun

Received: 10 May 2014/Accepted: 31 August 2014/Published online: 7 January 2015 © Science China Press and Springer-Verlag Berlin Heidelberg 2015

Abstract Satellite observations of atmospheric carbon dioxide (CO₂) provide a useful way to improve the understanding of global carbon cycling. In this paper, we present a comparison between simulated CO₂ concentrations from an inversion model of the CarbonTracker Data Assimilation System (CTDAS) and satellite-based CO₂ measurements of column-averaged dry air mole fraction (denoted XCO₂) derived from version 3.3 Atmospheric CO₂ Observations from Space retrievals of the Greenhouse Gases Observing SATellite (ACOS-GOSAT) L2 data products. We examine the differences of CTDAS and GOSAT to provide important guidance for the further investigation of CTDAS in order to quantify the corresponding flux estimates with satellite-based CO₂ observations. We find that the mean point-by-point difference (CTDAS-GOSAT) between CTDAS and GOSAT XCO₂ is -0.11 ± 1.81 ppm, with a high agreement (correlation r = 0.77, P < 0.05) over the studied period. The latitudinal zonal variations of CTDAS and GOSAT are in general agreement with clear seasonal fluctuations. The major

H. Zhang \cdot B. Chen $(\boxtimes) \cdot$ G. Xu \cdot M. Che \cdot J. Chen \cdot S. Fang \cdot X. Lin \cdot S. Sun

State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China e-mail: baozhang.chen@igsnrr.ac.cn

H. Zhang \cdot G. Xu \cdot M. Che \cdot X. Lin \cdot S. Sun University of Chinese Academy of Sciences, Beijing 100049, China

J. Yan

Department of Tourism and Environmental Sciences, Shaanxi Normal University, Xi'an 710062, China

Earth Sciences

www.scibull.com

exception occurs in the zonal band of 0°–15°N where the difference is approximately 4 ppm, indicating that large uncertainty may exist in the assimilated CO₂ for the low-latitude region of the Northern Hemisphere (NH). Additionally, we find that the hemispherical/continental differences between CTDAS and GOSAT are typically less than 1 ppm, but obvious discrepancies occur in different hemispheres/continents, with high consistency (point-by-point correlation r = 0.79, P < 0.05) in the NH and a weak correlation (point-by-point correlation r = 0.65, P < 0.05) in the Southern Hemisphere. Overall, the difference of CTDAS and GOSAT is small, and the comparison of CTDAS and GOSAT will further instruct the inverse modeling of CO₂ fluxes using GOSAT.

1 Introduction

Accurate quantification of biosphere fluxes of CO₂ is critical to understanding global and regional carbon cycles [1, 2]. The atmospheric inversion method provides an effective way to quantify the biosphere CO₂ concentration/ flux at the full-coverage spatial resolutions [3-7]. This approach derives the CO₂ concentrations and fluxes jointly from an atmospheric transport model and data assimilation technique. Unlike ecosystem modeling [8–15], the inverted method uses the atmospheric CO₂ transport process mechanism to describe the CO₂ spatiotemporal variations and uses the time-dependent Bayesian synthesis method to optimize the CO₂ concentrations and fluxes. This is advantageous for CO_2 estimation because the concentrations and fluxes can be constrained well by the observations in the inversion model. However, because of the sparseness of the existing CO_2 mixing ratio observation sites, the inversion estimate of CO_2 concentrations and CO_2 source and sink information remain unclear [16–19].

Satellite-based CO₂ observations of column-averaged dry air mole fraction (XCO₂) offer a new insight into the pattern of CO₂ mixing ratios and provide an additional constraint on the estimated CO₂ concentrations and fluxes of the atmospheric inversion method [16, 19–22]. These satellite-based measurements (e.g., GOSAT [23], AIRS [24], SCIAMACHY [25] and IASI [26]) allow for the quantification of large-scale temporal, spatial and seasonal variations in CO₂. As the first-dedicated greenhouse gas sensor [19, 23], GOSAT has been particularly useful for improving estimates of CO₂ concentrations and decreased uncertainties of CO₂ sources and sinks by providing further constrains on the inversion method [26-28], since it was specifically designed for monitoring high-precision observations of CO₂ concentrations with sensitivity in the lower troposphere [23, 29]. However, errors in GOSAT observations and models still need to be identified and minimized before these satellite-based measurements are assimilated into the inversion model, as they could lead to additional uncertainties of the inferred CO₂ concentrations and fluxes and result in misinterpretation of the global and regional carbon cycles. In this context, we present a comparison between GOSAT XCO₂ retrieved from version 3.3 Atmospheric CO₂ Observations from Space retrievals of the Greenhouse Gases Observing SATellite (ACOS-GO-SAT) L2 data products [30-32] with the CarbonTracker Data Assimilation System (CTDAS) [6, 33] CO₂ concentrations during April 2009–December 2010. We examined the differences of CTDAS and GOSAT to provide important guidance for the further investigation of CTDAS in order to quantify the corresponding flux estimates with satellite-based CO₂ observations.

2 Methods and data

2.1 GOSAT XCO₂ retrievals

We use the GOSAT XCO₂ L2 data products (Version 3.3) from the NASA Atmospheric CO₂ Observations from Space (ACOS3.3) XCO₂ retrievals [30-32] to compare with our CTDAS XCO₂ retrievals during April 2009–December 2010. These ACOS3.3 XCO₂ retrievals have already been evaluated by comparison with ground-based measurements of XCO₂ from Total Column Observing Network (TCCON) stations [30, 31] and have been successfully employed in many previous works [32, 34-36]. The ACOS3.3 XCO₂ retrievals were downloaded from

NASA Goddard Earth Sciences Data (http://disc.sci.gsfc. nasa.gov/acdisc/documentation/ACOS.shtml) for this study. Compared to the ACOS2.9, ACOS3.3 XCO₂ retrievals have changed their CO₂ absorption cross sections to 2.06 micro-bands, which are systematically ~1 % lower than the XCO₂ retrievals using 1.61 micro-bands, resulting in large differences in measurement values. Note that before the ACOS3.3 XCO₂ were used in this study, we applied an updated screening criteria to filter out the ACOS3.3 XCO₂ measurements and corrected their biases according to the reference of "ACOS Level 2 Standard Product Data User's Guide, version 3.3" (available from http://disc.sci.gsfc.nasa.gov/datareleases/acos-version-3.3).

2.2 CTDAS model

CTDAS (http://carbontracker.eu/ctdas/) [6, 33] was developed to estimate the global CO₂ surface fluxes and atmospheric CO₂ concentration distribution with high accuracy and precision [4, 6, 37–41]. First, the system forecasted the atmospheric CO₂ concentrations using the transport model TM5 [42] and then optimized these modeled CO_2 concentrations and flux fields using the data assimilation technique in CTDAS. In this study, we ran CTDAS using weekly resolution and a 5-week lag window to retrieve the volume mixing ratio of CO₂ (CTDAS XCO₂) sampled at GOSAT locations and times, based on method of Rodgers and Connor [43]. The CTDAS simulation spanned the period from 2008 to 2010, but the period from January 2008 to March 2009 was used as a spin-up period to initialize the model and was therefore excluded from our analysis. The driving meteorological data in CTDAS were from the European Centre for Medium-Range Weather (ECMWF, Forecasts http://www.ecmwf.int/research/ ifsdocs/CY28r1/index.html), and CTDAS was forced by four prior surface fluxes: (1) the first guess biosphere flux extracted from the Carnegie-Ames-Stanford Approach (CASA, http://geo.arc.nasa.gov/sge/casa/index4.html) [44]; (2) the fossil fuel emissions integrated from the Carbon Dioxide Information and Analysis Center (CDIAC) [45] and the Emission Database for Global Atmospheric Research (EDGAR) database [46]; (3) the biomass burning emissions obtained from Global Fire Emission Database version 2 (GFED2, http://ess1.ess.uci.edu/jranders/data/ GFED2); and (4) the prior ocean fluxes derived from airsea partial pressure difference [47]. The CO₂ measurements at the surface were assimilated in this system from the National Oceanic and Atmospheric Administration's Earth System Research Laboratory (NOAA-ESRL, http:// www.esrl.noaa.gov/gmd/ccgg/obspack/). The simulated 4-D (x, y, z, t) CO₂ concentration fields contain 25 vertical layers with a global horizontal resolution of $6^{\circ} \times 4^{\circ}$.

Download English Version:

https://daneshyari.com/en/article/5789249

Download Persian Version:

https://daneshyari.com/article/5789249

Daneshyari.com