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Abstract In this paper, a lattice Boltzmann equation

(LBE) model with multiple-relaxation-time (MRT) colli-

sion operator is developed based on the Enskog theory for

isothermal nonideal mixtures, which is an extension of the

previous single relaxation time (SRT) LBE model (Guo

and Zhao in Phys Rev E 68:035302, 2003). The present

MRT-LBE model overcomes some inherent defects of the

original SRT-LBE model such as the fixed Schmidt num-

ber and limited viscosity ratio. It is also interestingly

shown that the widely used Shan-Chen (SC) model, which

is constructed heuristically based on the pseudo-potential

concept, can also be regarded as a special case of the

present model, and thus putting a solid foundation for this

well-accepted multiphase LBE model. A series of nu-

merical simulations, including the static droplet and lay-

ered co-current flow, are conducted to test the applicability

of the present model for immiscible fluids with different

Schmidt numbers and large viscosity ratio, which may be

difficult for the original SRT-LBE model and the SC

model.
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1 Introduction

Numerical simulations of multiphase fluid flows play an

important role in many engineering problems and natural

processes. Traditional computational fluid dynamics (CFD)

methods based on the Navier–Stokes equations, such as the

volume of fluid [1] method and the level set method [2], are

usually difficult to capture the interfacial dynamics due to

the large disparity of temporal and spatial scales involved.

The lattice Boltzmann equation (LBE) method [3], which

is based on kinetic theory or micro particle dynamics,

provides an alternative way for simulating multiphase

flows by modeling the microscopic interaction among flu-

ids. Actually, the LBE has found wide applications in the

study of multiphase flows in the past decades, ranging from

single-component to multicomponent fluids.

Several types of LBE models for multiphase flows have

been developed from different viewpoints, such as the

color models [4–6], pseudo-potential models [7–11], free

energy models [12–14], phase-field models [15, 16], and

kinetic theory-based models [17–22]. Among the above

models, the pseudo-potential and free energy models have

been extensively accepted and applied by physicists and

engineers in the field of multiphase fluid flows, such as

droplet/bubble dynamics [23–28], contact line movement

[14, 29–33], phase separation [34–42], and multiphase

flows in porous media [43–46]. The pseudo-potential

models are popularly used due to their simplicity in the

treatment of interparticle interactions. The basic idea is to

mimic the microscopic molecular interaction at the meso-

scopic scale using a pseudo-potential depending on a local

density function. However, theoretical analysis shows that

the pseudo-potential models are consistent with thermo-

dynamic theories only when the local density function

takes a special exponent form [8]. On the other hand, the
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free energy models, which are constructed based on free

energy theory, do not suffer from this problem. A limita-

tion of this model is the lack of Galilean invariance that is

restored by several improved free energy models [27, 47,

48]. More recently, Xu et al. [40] proposed a new version

of free energy LBE model which the reduced scalar pres-

sure has a reasonable correlation to the density and sound

speed, and the new model has been employed in a variety

of studies [49, 50]. Besides the isothermal free energy

models, thermal LBE models for multiphase system have

also been developed, such as the model proposed in Ref.

[51]. Gan et al. [52] further developed the model by em-

ploying the fast Fourier transform (FFT) so that the energy

conservation is better satisfied and the spurious velocities

can be damped to negligible scale. The improved model

was successfully applied to the thermal liquid–vapor

separation problem [53].

It should be noted that although the pseudo-potential and

free energy models have been widely used, they are in lack

of solid theoretical foundation which maybe leads to some

drawbacks [18]. Subsequently, the LBE models based on

certain kinetic models for nonideal fluids are proposed. For

instance, Guo and Zhao [21, 22] developed two LBE

models for dense binary fluids under isothermal conditions

based on the Enskog equation. However, due to the use of

single relaxation time (SRT) or Bhatnagar–Gross–Krook

(BGK) collision operator, some inherent defects exist in

both LBE models, such as the limited viscosity ratio and

the fixed Schmidt number. These defects severely limit the

applications of these models.

In order to overcome the above limitations and retain the

clear physics picture of kinetic theory in LBE model, in

this work we will propose an improved isothermal model

for dense binary fluids with a multiple-relaxation-time

(MRT) collision operator [54, 55] based on the Enskog

kinetic theory. With the use of different relaxation times

for different modes, the numerical stability of the LBE can

be much improved and the applicable viscosity ratio range

can be enlarged significantly. Furthermore, the viscosity

and diffusivity can be determined from different relaxation

times so that the Schmidt can be adjusted freely.

2 Simplified Enskog model for nonideal binary

mixtures

Our starting point is the Enskog equation for a nonideal

binary mixture [56, 57]

ðDa þ ga � $va
Þfaðx; va; tÞ ¼ Jaa þ Jab; ð1Þ

where the subscript a denotes the component (0 or 1) and b

is the opposite to a; Da ¼ ot þ va � $ is the streaming

operator, and faðx; va; tÞ is the single-particle distribution

function for component a at position x with velocity va at

time t; ga is the acceleration due to an external force acting

on the particle of component a. Jac is the collision operator

between the particles of component a and c ð¼ a; bÞ and is

given by

Jac ¼
Z

dlac½vacðxþ yackÞfcðxþ rack; v
0

cÞfaðx; v
0

aÞ�

vacðx� yackÞfcðx� rack; vcÞfaðx; vaÞ�;
ð2Þ

where vac is the radial distribution function (RDF), yac ¼
rac=2 with rac ¼ ðra þ rcÞ=2, ri is the molecular diameter

of species i; k is the unit vector directed from molecule c to

particle a along the line of centers of the two colliding

particles, v and v0 are the molecular velocities before and

after the collision, respectively. The number density for

component a and the mixture velocity are defined as

na ¼
Z

fadva; qu ¼
X

a

ma

Z
vafadva; ð3Þ

where ma is the particle mass for component a and q ¼P
a mana is the density of the mixture.

The collision operator in the Enskog model is compli-

cated and is difficult for devising numerical methods. A

simplified Enskog model was developed for isothermal

systems [22] based on Eq. (1),

Dafaðxþ va; tÞ ¼ �
1

k
fa � f ðeqÞ

a

h i
þ �Fa; ð4Þ

where �Fa is the total force including the inter-particle and

external forces,

�Fa ¼
ðva � uÞ � Fa

qaha

f ðeqÞ
a ; ð5Þ

Fa ¼ Fap þ Fae ¼ �qaKaha þ qaga; ð6Þ

with Ka ¼
P

c bacqcvac$lnðq2
cvacÞ, and bac ¼ Vac=mc the

second virial coefficient, Vac ¼ 2D�1VDrD
ac, and VD ¼

ðp=4ÞD=2=Cð1þ D=2Þ (C is the Gamma function). f
ðeqÞ
a is

the local equilibrium distribution function given by

f ðeqÞ
a ¼ nað2phaÞ�D=2

exp½�ðva � uÞ2=ð2haÞ�; ð7Þ

where ha ¼ kBT=ma is the normalized temperature with

temperature T and Boltzmann constant kB, u is the local

barycentric velocity of the mixture, and k is the relaxation

time.

The model (4) is for nonideal gases. In the presence of

interfaces between the two components, an additional

surface force should be included, which can be written as

Fas ¼ jna$r2na; ð8Þ

where the parameter j is related to the strength of surface

tension.
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