

Selective oxidation of methanol to dimethoxymethane over V₂O₅/TiO₂-Al₂O₃ catalysts

Tuo Wang · Yali Meng · Liang Zeng · Jinlong Gong

Received: 7 February 2015/Accepted: 6 March 2015/Published online: 10 April 2015 © Science China Press and Springer-Verlag Berlin Heidelberg 2015

Abstract This paper describes the effect of the preparation method of binary oxide supports (TiO₂-Al₂O₃) on catalytic performance of V₂O₅/TiO₂-Al₂O₃ catalysts for methanol selective oxidation to dimethoxymethane (DMM). The TiO₂-Al₂O₃ supports are synthesized by a number of methods including mechanical mixing, ball milling, precipitation, co-precipitation, and sol-gel method, which is followed by incipient wetness impregnation to produce V₂O₅/TiO₂-Al₂O₃ catalysts. Among these samples, the V₂O₅/TiO₂-Al₂O₃ catalyst prepared by the sol-gel method has the best catalytic performance with a maximum methanol conversion of 48.9 % and a high DMM selectivity of 89.9 % at 393 K, showing superior performance than V₂O₅/TiO₂ and V₂O₅/Al₂O₃. The excellent catalytic performance of V₂O₅/TiO₂-Al₂O₃ is attributed to the effective interaction between the active component and the mixed support. Such interaction changes the chemical states of supported active V components, produces an increased amount of V⁴⁺ species, and facilitates the electron transfer between support and active component. Additionally, the incorporation of titanium cation into the alumina structure could also help produce an appropriate amount of acidic sites, which increases the DMM selectivity. The coordinated environment of the dispersed vanadia on TiO₂-Al₂O₃ mixed support improves the catalytic efficiency on methanol oxidation to DMM.

T. Wang · Y. Meng · L. Zeng · J. Gong Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

T. Wang · Y. Meng · L. Zeng · J. Gong (☒) Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China e-mail: jlgong@tju.edu.cn **Keywords** Methanol selective oxidation \cdot Dimethoxymethane \cdot V₂O₅/TiO₂-Al₂O₃ \cdot Binary oxide support

1 Introduction

Dimethoxymethane (DMM) has successfully attracted increasing attention as a downstream chemical product of methanol in industrial practice. DMM is a useful intermediate in organic synthesis and an excellent solvent in perfume and pharmaceutical industries. It can also act as an environmentally friendly fuel with high efficiency and low toxicity [1]. Moreover, it has been used as a starting monomer in the synthesis of polyoxymethylene dimethylether (POMM) [2]. The traditional method for DMM synthesis includes two consecutive steps: gas-phase methanol partial oxidation to formaldehyde (FA) and the subsequent acetalization of methanol and formaldehyde over acid catalysts [3]. However, this reaction scheme suffers from high reaction temperatures, complicated procedures, and severe equipment corrosion [2]. In addition to the target product DMM in methanol oxidation, several byproducts could form, including methyl formate (MF), dimethyl ether (DME), FA, and oxycarbide. An alternative synthetic pathway by one-step selective oxidation of methanol to DMM under mild reaction conditions becomes more desirable with both environmental and economic advantages. To obtain a high DMM yield in one step, the design of the catalyst is followed by the principle of appropriately balanced redox ability and acidity [4]. Excessive redox sites of the catalyst could lead to the abundant amount of FA, MF, and oxycarbide, while superfluous acidic sites result in a large amount of DME.

Several catalytic systems have been reported to be active for the methanol oxidation to DMM by carefully coupling the redox sites with suitable supports. For example, Re oxide has been considered as a potential active site for methanol oxidation, and the supported Re oxide like Re/γ-Fe₂O₃ catalyst has a DMM selectivity of 91 % and a methanol conversion of 48.4 % at 513 K [5]. But a bulk ReO₃ catalyst without support has a rather low methanol conversion, only $\sim 12.4 \%$ [5]. The V₂O₅/TiO₂based catalysts by acidic modification have shown superior performance. For instance, V₂O₅/TiO₂/SO₄²⁻ achieved a 47 % methanol conversion at 393 K, which is much better than the conventional V₂O₅/TiO₂ catalyst with 17 % methanol conversion [4, 6, 7]. The bulk H₅PV₂Mo₁₀O₄₀ only showed a 41.1 % methanol conversion with a 40.2 % DMM selectivity at 453-513 K, while the supported heteropoly acid catalysts exhibited 60.3 %-68.4 % methanol conversion with 67 %-51 % DMM selectivity. This is benefitted from the Keggin structures of H_{3+n}PV_nMo_{12-n}O₄₀ providing both redox and Bronsted acid sites required for producing DMM [8]. Additionally, several other catalytic systems have been reported to be active for the methanol oxidation to DMM, including modified V/TS-1 catalysts [9], amorphous multi-metal oxides [10, 11], Fe₂(MoO₄)₃–MoO₃ catalysts [2, 12]. Among these catalysts, the supported V₂O₅ catalysts have shown excellent catalysis performance in the selective oxidation of methanol to DMM, owing to the outstanding redox properties of V_2O_5 .

The catalytic activity and selectivity of the catalyst would be improved by the use of an appropriate support. Due to its high specific surface area, weak acidity, and good thermal stability, γ -Al₂O₃ has been widely used as a support for a number of catalysts. Recently, some interesting results have been obtained for TiO₂ as a promoter on high surface area supports. The chemical states of supported metal or metal oxides, adsorption properties of the catalyst and their catalytic activity are influenced by the incorporation of TiO₂ with the support. Particularly, TiO₂-Al₂O₃ support has drawn special attention owing to its versatile catalytic properties for various commercially important reactions such as isomerization of alkenes, dehydration of alcohols, and hydrodesulphurization [13–15]. Particularly, the TiO₂-Al₂O₃ supported catalysts show better performance than single Al₂O₃ supported catalyst in the hydrodesulfurization (HDS) reaction [14]. It is also well established that the supported vanadium oxides are effective catalysts for partial oxidation of hydrocarbons and alcohols [13, 16, 17]. And the structure of the dispersed vanadium species is closely related to the nature of the specific oxide support, the loading amount, and the preparation procedure [18].

Considering versatile catalytic properties of TiO₂-Al₂O₃ support and good redox properties of V₂O₅, we have developed V₂O₅/TiO₂-Al₂O₃ catalysts for methanol oxidation to DMM. The aim of this study is to explore the influence of preparation method of mixed TiO₂-Al₂O₃ support on the catalytic activity of V₂O₅. The V₂O₅/TiO₂-Al₂O₃ catalysts prepared by five different methods have been employed in selective methanol oxidation to DMM, including mechanical mixing, ball milling, precipitation, co-precipitation, and sol-gel methods. The materials are characterized with the N₂ adsorption/desorption, X-ray diffraction (XRD), temperature-programmed reduction (H₂-TPR), Raman spectroscopy, temperature-programmed desorption of ammonia (NH3-TPD), and X-ray photoelectron spectroscopy (XPS) techniques. A set of activity tests has been conducted in a fixed-bed micro-reactor for collecting and comparing their kinetic data. The relationship between catalytic activities and the behaviors of both redox and acidic sites of V₂O₅/TiO₂-Al₂O₃ catalysts is analyzed and discussed.

2 Experimental

2.1 Catalyst preparation

A series of 15V₂O₅/TiO₂-Al₂O₃ catalysts were prepared by a wetness impregnation method with the TiO₂-Al₂O₃ complex support. The V₂O₅ content is all fixed at 15 % for well dispersion and effective comparison reason, as the monolayer coverage of V₂O₅/TiO₂ and V₂O₅/Al₂O₃ catalysts is about 12.5 % and 20 %, respectively [7, 19]. The TiO₂-Al₂O₃ complex support were prepared by five different methods-mechanical mixing, ball milling, precipitation, sol-gel, and co-precipitation method-with the uniform constitute of Al_2O_3 and TiO_2 (Al_2O_3 : $TiO_2 = 2:1$ by weight). A γ-Al₂O₃ powder support and an industrial TiO₂ (P25) (80 % anatase and 20 % rutile) powder were calcined in air at 573 K for 2 h prior to the catalyst preparation. For the complex support with the mechanical mixing method (denoted as TiO₂-Al₂O₃-mix), the required amount of Al₂O₃ and P25 were mechanically mixed with each other until smooth powder was formed. For the support with the ball-milling method (denoted as TiO₂-Al₂O₃mil), the required amount of Al₂O₃ and P25 were spread in the high energy ball-milling pot and milled for 12 h. The complex support with the precipitation method (denoted as TiO₂-Al₂O₃-imp) was prepared by the method of gelsupported precipitation [13]. In the case with the sol-gel method (denoted as TiO₂-Al₂O₃-sol), it was prepared by the procedure adapted from the literature [20]. For the complex support with the co-precipitation method (denoted

Download English Version:

https://daneshyari.com/en/article/5789335

Download Persian Version:

https://daneshyari.com/article/5789335

<u>Daneshyari.com</u>