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Abstract In this paper we give an appropriate energy

equation considering the diffusion and the energy produc-

tion contributions of species for a complex coupled system

with chemical reaction. It is shown that the contribution of

the mass diffusion on the internal energy is the same

whether it is introduced by the mass flow through the outer

boundary or by the inner chemical reaction. In addition, the

diffusion is a purely irreversible process and does not

produce reversible entropy or entropy flow. Based on this

theory a new entropy production rate equation is derived

for the coupled thermal diffusive chemical heterogeneous

system. The evolution equations of the heat conduction and

the mass diffusion derived from this theory are fully con-

sistent with the Fourier and Fick’s laws.
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1 Introduction

In modern science and technology there are large coupling

effects among transports of mass, heat, electric charge and

chemical reactions in a complex heterogeneous system.

The nonequilibrium thermodynamics together with modern

continuum mechanics allow us to construct an efficient

theory to understand the coupling multi-field phenomena.

There have been extensive studies to discuss the coupling

problem in a complex heterogeneous system [1–10]. In the

current textbooks and literatures, the energy equation is

shown as

q _u ¼ r : _e�r � q; eij ¼ ðui;j þ uj;iÞ=2; or

dU ¼
Z
V

qdudV ¼ dW þ dQ;

dW ¼
Z
V

f � dudV þ
Z
a

T � duda;

dQ ¼ �
Z
a

q � nda;

ð1Þ

where dU is the internal energy rate, dW is the external

work rate done on the medium, dQ is the heat rate supplied

by the environment, u is the internal energy density, f is the

mechanical body force, r is the Cauchy stress tensor, e is

the strain tensor, q is the heat flow vector, T ¼ r � n is the

surface traction, and n is the external normal of the surface.

In Eq. (1), a comma in the subscript followed by index i

indicates partial differentiation with respect to xi, such as

ui;j ¼ oui=oxj: Though it is usually assumed that the total

mass is constant in a chemical reaction process, the energy

exchange with environment is occurred. The mass of each

species of the system can be varied. In other words, each

subsystem consisted of a species is an open subsystem,

with its own mass diffusion and energy production phe-

nomena. For different species the corresponding chemical

potential is different, so the total diffuse energy and energy

production of the system, which are the sum of all the

species, are varied. Therefore the mass exchange and en-

ergy exchange in the subsystems as well as the whole

system should be considered. However, Eq. (1) does not

include the diffusion energy and the energy production

produced by the species of the complex system. Therefore
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the corresponding entropy production rate equation and

evolution equation based on Eq. (1) are also not fully

appropriate.

In this paper we give an energy conservation equation,

which considers the mass exchange and energy exchange

of the species in the system, and derive the new entropy

production rate equation and evolution equation for a

system with internal chemical reaction. A systematic dis-

cussion of the nonequilibrium thermodynamics in coupled

thermal mechanical diffusive chemical heterogeneous

system is presented.

2 A general form of the conservation equation

Why the diffuse energy and energy production produced by

the species in the chemical reaction system have not been

considered in the energy conservation equation in the pre-

vious literatures? The reason may be that the internal

boundary introduced by the chemical reaction was not ad-

dressed. In this section we emphasize the internal boundary

and discuss the general case for the conservation equation.

The conservation equation of a continuous single value

physical variable A in V can be derived as follows. Figure 1

shows an open system with the volume V, the fixed outer

boundary a0 and inner boundary aI. Let v be the motion

velocity vector of A and the production rate of A is _gðPÞ at
a point P in V. Under theses conditions, the conservation

equation of A isZ
V

ðoA=otÞdV ¼ �
Z
a

Av � ndaþ
Z
V

_gdV; a ¼ a0 þ aI:

ð2Þ

When A is a continuous single value function in V, the

Gauss divergence theorem can be expressed asZ
a

Av � nda ¼
Z
V

r � Avð ÞdV ; ð3Þ

where r is the vector differential operator delta. Since the

volume is arbitrary in Eq. (2), we obtain the local

conservation equation of A:

oA=ot þr � Avð Þ ¼ _g: ð4Þ

When aI approaches zero, the mass flow through its

boundary is nonzero, i.e., limmax l?0

H
a
Av � nda 6¼ 0; where

l is the inner size of aI. In the limit it represents a point

source or sink of A. Consider a contour surrounding a point

of distributed source A, the conservation equation of the

variable A is still expressed by Eq. (4). This concept is

extensively used in the physics, mathematics and

engineering.

3 The mass conservation equation

In this section we show that the usual mass conservation

equation is still valid when the internal boundaries are

considered. For a complex thermal mechanical diffuse

chemical reaction heterogeneous system with N species,

the mass conservation equation can be obtained by using

the theory given in Sect. 2. In this case for a species i, A

represents the partial mass m(i) or partial density qðiÞ: From
Eq. (4), we get

oqðkÞ=ot þr � qðkÞvðkÞ
� �

¼ _g kð Þ; or

_q kð Þ þ qðkÞr � vðkÞ ¼ _gðkÞ; k ¼ 1� N;

q kð Þ ¼ M kð Þ

V
¼ qc kð Þ; M ¼

XN
k¼1

M kð Þ;

q ¼
XN
k¼1

q kð Þ ¼ M

V
;

c kð Þ ¼ q kð Þ

q
¼ M kð Þ

M
;
XN
k¼1

c kð Þ ¼ 1;

ð5Þ

where M(k), q kð Þ, c(k) and _gðkÞ are the mass, partial density,

the mass (density) fraction or the (mass) concentration and

the mass or density production rate of the species k, re-

spectively, M is the total mass, V is the total volume. Note

throughout this paper, we use superscript to denote the

number of the species and the number of the chemical

reaction and the summation notation is written in evidence,

i.e., the summation rule for the repeated indices is not used,

such as in Eq. (5).

Let v be the centroid velocity of an element, and let w(k)

and J(k) be the diffuse velocity and the mass flow or the

mass diffusion flux of the species k, respectively. It is noted

that the velocity of a species k is v(k), but the velocity of an

element is v, so when we discuss the entire behavior of an

element, for the species k the diffuse velocity is

w(k) = v(k) - v and the mass flow is JðkÞ ¼ qðkÞðvðkÞ � vÞ;
i.e. [5–8]:Fig. 1 The stretch for derivation of the mass equation
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