ELSEVIER Contents lists available at ScienceDirect ### Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat # Investigation of simultaneous adsorption of SO_2 and NO on γ -alumina at low temperature using DRIFTS Ying Xie^a, Ying Chen^{b,*}, Yugang Ma^a, Zhenglai Jin^{a,c} - ^a Department of Chemical and Environmental Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China - ^b Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China - c School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China #### ARTICLE INFO Article history: Received 28 April 2011 Received in revised form 7 August 2011 Accepted 9 August 2011 Available online 16 August 2011 Keywords: SO_2 NO γ -Al $_2O_3$ Adsorption mechanism DRIFTS #### ABSTRACT The interaction mechanism between SO_2 and NO on γ - Al_2O_3 was explored by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and outlet response of the concentrations of NO, NO_2 and SO_2 under exposure of Al_2O_3 to SO_2 and/or NO in the absence or presence of oxygen at $150\,^{\circ}C$. The results showed that SO_2 promoted NO oxidation and NO transformed weakly adsorbed SO_2 into strongly adsorbed species on γ - Al_2O_3 , and the presence of O_2 facilitated this transformation. An interaction mechanism between SO_2 and NO on γ - Al_2O_3 was thus postulated. The exposure of Al_2O_3 to SO_2 and NO in the presence of O_2 resulted in the formation of at least two types of intermediates. One type was $[SO_3NO]$, which decomposed to form NO_2 , and the other type was $[SO_3NO_2]$, which decomposed to form SO_3 . The decomposition of both intermediates probably formed O vacancies replaceable by gaseous O_2 . Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved. #### 1. Introduction The emission of sulphur oxides (SO_x) and nitrogen oxides (NO_x) from flue gases, causing acid rain and urban air pollution, is a major environmental issue. Normally, SO_x and NO_x in flue gases consist of more than 98% sulphur dioxide (SO_2) and over 90–95% nitric oxide (NO) [1,2]. To control SO_2 and NO_x emission, a great deal of simultaneous removal processes have been developed [3–9]. Flue gas treatment technologies are broadly classified as dry and wet techniques. The wet techniques use scrubber columns in which the flue-gas mixture is subjected to liquid wash to remove gaseous SO_2 and NO_x with high efficiency, however, the wet process induces the difficulty of product disposal. Therefore, it is highly desirable to have a suitable single-step dry process for the removal of SO_2 and NO_x from flue gas. As a promising dry process, the NOXSO process uses a regenerable sorbent (prepared by spraying sodium carbonate on $\gamma\text{-}Al_2O_3$) to remove SO_2 and NO_x simultaneously by catalytic oxidation. The process was tested at different scales, which was still in stage of demonstration industrial plant [10]. FLS-miljØ-Denmark has developed a new process derived from NOXSO process. In the process, the simultaneous adsorption of SO_2 and NO_x was performed on Na- $\gamma\text{-}Al_2O_3$ in a circulating dilute phase riser reactor. De Wilde et al. performed simultaneous SO_2 and NO_x removal on $Na-\gamma-Al_2O_3$ at lower temperature (150 °C) [11]. The interaction of SO_2 and NO_x on $Na-\gamma-Al_2O_3$ is described. They explained the influence of the SO_2 presence on the simultaneous adsorption of NO and O_2 by the adsorbed SO_2 as an intermediate in the NO and O_2 adsorption. With respect to the role of supporter $\gamma-Al_2O_3$ and interaction of SO_2 and NO on $\gamma-Al_2O_3$ without Na-impregnation, however, not much information is available in literature. Moreover, few studies related to the sequential adsorption of SO_2 and NO_x on $\gamma-Al_2O_3$. In this paper, the interaction among NO, SO_2 and O_2 on γ - Al_2O_3 at low temperature(150 °C) was systematically studied. Different with De Wilde's research [11] sequential adsorption experiment was carried out for better understanding the reactions occurring on γ - Al_2O_3 surface. Finally, the interaction mechanism of SO_2 and NO was proposed in this paper. #### 2. Experimental The sample of γ -Al $_2$ O $_3$ was obtained from Merck (Merck Co., Germany) in the form of powder with a particle size of 0.10–0.15 mm. The specific surface area was $128\,\mathrm{m}^2/\mathrm{g}$, and the average pore diameter and pore volume were 7 nm and 0.2484 cm $^3/\mathrm{g}$, determined by ourselves. The feed gas mixture contained 0.075% NO, 0.51% SO $_2$, 4.5% O $_2$, and balance Ar. The adsorption experiments were performed in a fixed-bed reactor apparatus. The sample $(1\,g)$ was charged in a stainless reactor $(\emptyset19\,\text{mm})$ and then purged under inert flow at a total flow rate ^{*} Corresponding author. Tel.: +86 580 2556212; fax: +86 580 2551439. E-mail address: chenying9468@126.com (Y. Chen). of $100 \, ml/min$ at $600 \, ^{\circ}C$ for $1 \, h$ in order to remove containing oxygen compounds (H_2O and CO_2); it was then cooled to $150 \, ^{\circ}C$ and exposed to a mixture of NO and/or SO_2 in Ar at a total flow rate of $100 \, ml/min$ until the concentration of NO and SO_2 in the outlet gas became steady. A series of NO and SO $_2$ adsorption experiments on γ -Al $_2$ O $_3$ were performed by exposing the samples to NO and/or SO $_2$ in Ar with or without oxygen. SO $_2$ and NO sequential experiments were also performed (termed PreSO $_2$ and PreNO). PreSO $_2$ indicates that SO $_2$ /O $_2$ was first introduced to a fresh catalyst ('clean' Al $_2$ O $_3$). After saturation (sulphated Al $_2$ O $_3$), the SO $_2$ gas flow was changed to inert gas for 5 min, followed by exposure of the sulphated Al $_2$ O $_3$ to NO/O $_2$ in Ar. PreNO indicates that NO/O $_2$ was first introduced to a fresh catalyst ('clean' Al $_2$ O $_3$). After saturation (nitrated Al $_2$ O $_3$), the nitrated Al $_2$ O $_3$ was exposed to SO $_2$ /O $_2$ in Ar. The measured outlet response curves were determined in a flow-reactor equipped with a Total Sulphur/Nitrogen Analyzer for monitoring the concentrations of NO, NO $_2$ and SO $_2$ in the outlet gas (detection limit S or N with 0.2 mg/m 3). After saturation, the sample was cooled to 50 °C and then purged in Ar for 1 h. Finally, a temperature ramp of 10 °C/min from 50 to 727 °C was applied with an Ar gas rate of 20 ml/min. The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectrum was carried out on a Bruker vector 33 spectrometer #### 3. Results and discussion #### 3.1. Adsorption of SO₂ and NO The amounts of adsorbed SO_2 and NO under different atmospheres over $\gamma\text{-}Al_2O_3$ at 150 $^{\circ}C$ are summarised in Table 1. #### 3.1.1. Separate adsorption of SO₂ and NO Comparing SO_2 with SO_2/O_2 (experiments a and b in Table 1), the amount of adsorbed SO_2 in the absence of O_2 was $0.265 \, \text{mmol g}^{-1}$, whereas that in the presence of O_2 was $0.321 \, \text{mmol g}^{-1}$. This demonstrated that the adsorption of SO_2 alone on γ -Al $_2O_3$ at $150\,^{\circ}\text{C}$ occurred, and that the presence of O_2 enhanced SO_2 adsorption (the amount of adsorbed SO_2 increased by 20%). In addition, $0.014 \, \text{mmol g}^{-1}$ of SO_2 desorbed when sweeping with Ar at $150\,^{\circ}\text{C}$, which indicated that some adsorbed SO_2 was unstable. Comparing NO with NO/O $_2$ (experiments c and d), the amount of adsorbed NO in the absence of O $_2$ was 0.0298 mmol g $^{-1}$, whereas in the presence of O $_2$, it was 0.038 mmol g $^{-1}$. These data indicated that NO could be independently adsorbed on γ -Al $_2$ O $_3$ at 150 °C. Additionally, the amount of adsorbed NO increased in the presence of O $_2$. In experiment c for NO in the absence of O $_2$, oxygen-containing compounds were removed from the γ -Al $_2$ O $_3$ surface by purging with Ar at 600 °C for 1 h before adsorption. However, a trace of NO $_2$ still occurred in the outlet gas. This was likely that lattice oxygen of the γ -Al $_2$ O $_3$ participated in the oxidation reaction [12,13]. #### 3.1.2. Simultaneous adsorption of SO₂ and NO Comparing the amount of adsorbed SO_2 over γ - Al_2O_3 under SO_2/NO and SO_2 atmospheres (experiments e and a in Table 1), the amount of adsorbed SO_2 for simultaneous adsorption of SO_2 and NO was higher than that in the absence of NO, which indicated that NO enhanced the adsorption of SO_2 . Comparing SO_2/NO with NO (experiments e and c in Table 1), although the amount of adsorbed NO was almost the same, NO_2 was also detected in the outlet gas for simultaneous adsorption of SO_2 and NO. Based on thermodynamics, it was unlikely that the oxygen of NO_2 was from SO_2 . Thus, the oxidation of NO may be attributed to the lattice oxygen of γ -Al $_2O_3$ with SO_2 , which promoted this oxidation reaction. When $SO_2/NO/O_2$ was compared with SO_2/NO (experiments f and e in Table 1), both the amounts of adsorbed SO_2 and NO were significantly higher than in the absence of O_2 . This observation revealed that O_2 facilitated the simultaneous adsorption of SO_2 and NO, whereas NO promoted the adsorption of SO_2 and vice versa. #### 3.1.3. Sequential adsorption of SO₂ and NO Comparing SO_2/O_2 over "nitrated Al_2O_3 " with SO_2/O_2 over "clean Al_2O_3 " (experiments h and b in Table 1), the amount of adsorbed SO_2 over the "clean Al_2O_3 " was $0.321 \, \text{mmol} \, \text{g}^{-1}$, whereas that over the "nitrated Al_2O_3 " increased to $0.377 \, \text{mmol} \, \text{g}^{-1}$. Thus, pre-adsorbed NO species on Al_2O_3 promoted SO_2 adsorption. Moreover, in experiment h, SO_2/O_2 was exposed to "nitrated Al_2O_3 " after NO/O_2 was saturated on the Al_2O_3 and NO and NO_2 were detected in the outlet gas. It might have been that some adsorbed NO species on the Al_2O_3 were replaced by SO_2 due to its stronger acidity, leading to the discharge of NO and NO_2 into the outlet gas. When NO/O_2 over "sulphated Al_2O_3 " was compared with "clean Al_2O_3 " (experiments g and d in Table 1), the amount of adsorbed NO increased by 27%, which indicating that pre-adsorbed SO_2 species on Al_2O_3 promoted NO adsorption. In the $PreSO_2$ experiment (experiment g in Table 1), the desorbed SO_2 was 0.0533 mmol g $^{-1}$, whereas that for SO_2/O_2 over "clean Al_2O_3 " was 0.014 mmol g $^{-1}$ (experiment b in Table 1) by sweeping with Ar. The reason for this phenomenon was probably that some pre-adsorbed SO_2 was replaced by NO. In conclusion, both the adsorption of SO_2 on nitrated Al_2O_3 (PreNO) and NO on sulphated (PreSO $_2$) were promoted regardless of the sequence of exposure for SO_2 or NO. #### 3.2. DRIFTS studies of adsorbed species #### 3.2.1. Separate adsorption of SO₂ and NO The surface species formed from the reaction of SO_2 or NO on Al_2O_3 were studied by DRIFTS (Fig. 1). Fig. 1(a, b and i) shows the spectra of SO_2 or SO_2/O_2 adsorption on Al_2O_3 and the desorption after SO_2/O_2 saturation at $150\,^{\circ}$ C for 1 h. Datta et al. [14] identified at least five different adsorption SO_2 sites on Al_2O_3 : a species physically adsorbed on hydroxyl groups (Al–OH– SO_2) with bands at 1334 and 1148 cm⁻¹, a weakly chemisorbed species (Al–O– SO_2) with bands at 1322 and1140 cm⁻¹, two species chemisorbed on acidic (positively charged aluminium ions, $Al-SO_2$) Al^{3+} sites with bands at 1255 and 1189 cm⁻¹, and one strongly chemisorbed species ($Al-SO_3$) with a broad band at approximately 1060 cm⁻¹. As seen from spectra (a) and (b), the bands at 1325 cm⁻¹ were observed and assigned to a weakly chemisorbed species ($Al-O-SO_2$) [15]. In addition, the bands between 1200 and 1000 cm⁻¹ might all be characteristic peaks of mixtures of the above-mentioned SO_2 surface species. It was noted that the intensity for the bands from spectrum (b) was greater than that from spectrum (a). Additionally, the increase in intensity at $1325 \, \mathrm{cm}^{-1}$ indicated that O_2 had an effect on SO_2 chemisorption at $150\,^{\circ}$ C, which probably enhanced SO_2 adsorption on O^2 – basic sites of Al_2O_3 (Al–O– SO_2). In the literature, Andersson et al. [16] reported that the amount of SO_2 adsorbed in the presence of O_2 was much higher than that absorbed in the absence of O_2 . The results (seen from experiments b and a in Table 1) were in agreement with Andersson's report. It was probable that O_2 formed new basic sites at the lattice defect-sites on Al_2O_3 , thus increasing the amount of Al–O– SO_2 species present. Furthermore, compared with spectrum (b), the intensity for bands of spectrum (i) at 1325 and $1140\,\mathrm{cm}^{-1}$ decreased, indicating that adsorbed SO_2 was bonded to O^2 – basic sites through the sulphur atom (Al–O– SO_2), a weak surface species readily desorbed by sweeping in Ar at $150\,^{\circ}$ C. Fig. 1(c and d) displays representative DRIFTS data for Al_2O_3 exposed to NO at $150\,^{\circ}$ C. The bands in the region from 1640 to $1000\,\mathrm{cm}^{-1}$ were assigned to surface nitrate and nitrite species [17]. #### Download English Version: ## https://daneshyari.com/en/article/578953 Download Persian Version: https://daneshyari.com/article/578953 <u>Daneshyari.com</u>