ELSEVIER

Contents lists available at ScienceDirect

### Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat



# Investigation of simultaneous adsorption of $SO_2$ and NO on $\gamma$ -alumina at low temperature using DRIFTS

Ying Xie<sup>a</sup>, Ying Chen<sup>b,\*</sup>, Yugang Ma<sup>a</sup>, Zhenglai Jin<sup>a,c</sup>

- <sup>a</sup> Department of Chemical and Environmental Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
- <sup>b</sup> Zhejiang Ocean University, Zhoushan, 316000, Zhejiang, China
- c School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China

#### ARTICLE INFO

Article history:
Received 28 April 2011
Received in revised form 7 August 2011
Accepted 9 August 2011
Available online 16 August 2011

Keywords:  $SO_2$  NO  $\gamma$ -Al $_2O_3$  Adsorption mechanism DRIFTS

#### ABSTRACT

The interaction mechanism between  $SO_2$  and NO on  $\gamma$ - $Al_2O_3$  was explored by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and outlet response of the concentrations of NO,  $NO_2$  and  $SO_2$  under exposure of  $Al_2O_3$  to  $SO_2$  and/or NO in the absence or presence of oxygen at  $150\,^{\circ}C$ . The results showed that  $SO_2$  promoted NO oxidation and NO transformed weakly adsorbed  $SO_2$  into strongly adsorbed species on  $\gamma$ - $Al_2O_3$ , and the presence of  $O_2$  facilitated this transformation. An interaction mechanism between  $SO_2$  and NO on  $\gamma$ - $Al_2O_3$  was thus postulated. The exposure of  $Al_2O_3$  to  $SO_2$  and NO in the presence of  $O_2$  resulted in the formation of at least two types of intermediates. One type was  $[SO_3NO]$ , which decomposed to form  $NO_2$ , and the other type was  $[SO_3NO_2]$ , which decomposed to form  $SO_3$ . The decomposition of both intermediates probably formed O vacancies replaceable by gaseous  $O_2$ .

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.

#### 1. Introduction

The emission of sulphur oxides  $(SO_x)$  and nitrogen oxides  $(NO_x)$  from flue gases, causing acid rain and urban air pollution, is a major environmental issue. Normally,  $SO_x$  and  $NO_x$  in flue gases consist of more than 98% sulphur dioxide  $(SO_2)$  and over 90–95% nitric oxide (NO) [1,2]. To control  $SO_2$  and  $NO_x$  emission, a great deal of simultaneous removal processes have been developed [3–9]. Flue gas treatment technologies are broadly classified as dry and wet techniques. The wet techniques use scrubber columns in which the flue-gas mixture is subjected to liquid wash to remove gaseous  $SO_2$  and  $NO_x$  with high efficiency, however, the wet process induces the difficulty of product disposal. Therefore, it is highly desirable to have a suitable single-step dry process for the removal of  $SO_2$  and  $NO_x$  from flue gas.

As a promising dry process, the NOXSO process uses a regenerable sorbent (prepared by spraying sodium carbonate on  $\gamma\text{-}Al_2O_3$ ) to remove  $SO_2$  and  $NO_x$  simultaneously by catalytic oxidation. The process was tested at different scales, which was still in stage of demonstration industrial plant [10]. FLS-miljØ-Denmark has developed a new process derived from NOXSO process. In the process, the simultaneous adsorption of  $SO_2$  and  $NO_x$  was performed on Na- $\gamma\text{-}Al_2O_3$  in a circulating dilute phase riser reactor. De Wilde

et al. performed simultaneous  $SO_2$  and  $NO_x$  removal on  $Na-\gamma-Al_2O_3$  at lower temperature (150 °C) [11]. The interaction of  $SO_2$  and  $NO_x$  on  $Na-\gamma-Al_2O_3$  is described. They explained the influence of the  $SO_2$  presence on the simultaneous adsorption of NO and  $O_2$  by the adsorbed  $SO_2$  as an intermediate in the NO and  $O_2$  adsorption. With respect to the role of supporter  $\gamma-Al_2O_3$  and interaction of  $SO_2$  and NO on  $\gamma-Al_2O_3$  without Na-impregnation, however, not much information is available in literature. Moreover, few studies related to the sequential adsorption of  $SO_2$  and  $NO_x$  on  $\gamma-Al_2O_3$ .

In this paper, the interaction among NO,  $SO_2$  and  $O_2$  on  $\gamma$ - $Al_2O_3$  at low temperature(150 °C) was systematically studied. Different with De Wilde's research [11] sequential adsorption experiment was carried out for better understanding the reactions occurring on  $\gamma$ - $Al_2O_3$  surface. Finally, the interaction mechanism of  $SO_2$  and NO was proposed in this paper.

#### 2. Experimental

The sample of  $\gamma$ -Al $_2$ O $_3$  was obtained from Merck (Merck Co., Germany) in the form of powder with a particle size of 0.10–0.15 mm. The specific surface area was  $128\,\mathrm{m}^2/\mathrm{g}$ , and the average pore diameter and pore volume were 7 nm and 0.2484 cm $^3/\mathrm{g}$ , determined by ourselves. The feed gas mixture contained 0.075% NO, 0.51% SO $_2$ , 4.5% O $_2$ , and balance Ar.

The adsorption experiments were performed in a fixed-bed reactor apparatus. The sample  $(1\,g)$  was charged in a stainless reactor  $(\emptyset19\,\text{mm})$  and then purged under inert flow at a total flow rate

<sup>\*</sup> Corresponding author. Tel.: +86 580 2556212; fax: +86 580 2551439. E-mail address: chenying9468@126.com (Y. Chen).

of  $100 \, ml/min$  at  $600 \, ^{\circ}C$  for  $1 \, h$  in order to remove containing oxygen compounds ( $H_2O$  and  $CO_2$ ); it was then cooled to  $150 \, ^{\circ}C$  and exposed to a mixture of NO and/or  $SO_2$  in Ar at a total flow rate of  $100 \, ml/min$  until the concentration of NO and  $SO_2$  in the outlet gas became steady.

A series of NO and SO $_2$  adsorption experiments on  $\gamma$ -Al $_2$ O $_3$  were performed by exposing the samples to NO and/or SO $_2$  in Ar with or without oxygen. SO $_2$  and NO sequential experiments were also performed (termed PreSO $_2$  and PreNO). PreSO $_2$  indicates that SO $_2$ /O $_2$  was first introduced to a fresh catalyst ('clean' Al $_2$ O $_3$ ). After saturation (sulphated Al $_2$ O $_3$ ), the SO $_2$  gas flow was changed to inert gas for 5 min, followed by exposure of the sulphated Al $_2$ O $_3$  to NO/O $_2$  in Ar. PreNO indicates that NO/O $_2$  was first introduced to a fresh catalyst ('clean' Al $_2$ O $_3$ ). After saturation (nitrated Al $_2$ O $_3$ ), the nitrated Al $_2$ O $_3$  was exposed to SO $_2$ /O $_2$  in Ar.

The measured outlet response curves were determined in a flow-reactor equipped with a Total Sulphur/Nitrogen Analyzer for monitoring the concentrations of NO, NO $_2$  and SO $_2$  in the outlet gas (detection limit S or N with 0.2 mg/m $^3$ ). After saturation, the sample was cooled to 50 °C and then purged in Ar for 1 h. Finally, a temperature ramp of 10 °C/min from 50 to 727 °C was applied with an Ar gas rate of 20 ml/min. The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectrum was carried out on a Bruker vector 33 spectrometer

#### 3. Results and discussion

#### 3.1. Adsorption of SO<sub>2</sub> and NO

The amounts of adsorbed  $SO_2$  and NO under different atmospheres over  $\gamma\text{-}Al_2O_3$  at 150  $^{\circ}C$  are summarised in Table 1.

#### 3.1.1. Separate adsorption of SO<sub>2</sub> and NO

Comparing  $SO_2$  with  $SO_2/O_2$  (experiments a and b in Table 1), the amount of adsorbed  $SO_2$  in the absence of  $O_2$  was  $0.265 \, \text{mmol g}^{-1}$ , whereas that in the presence of  $O_2$  was  $0.321 \, \text{mmol g}^{-1}$ . This demonstrated that the adsorption of  $SO_2$  alone on  $\gamma$ -Al $_2O_3$  at  $150\,^{\circ}\text{C}$  occurred, and that the presence of  $O_2$  enhanced  $SO_2$  adsorption (the amount of adsorbed  $SO_2$  increased by 20%). In addition,  $0.014 \, \text{mmol g}^{-1}$  of  $SO_2$  desorbed when sweeping with Ar at  $150\,^{\circ}\text{C}$ , which indicated that some adsorbed  $SO_2$  was unstable.

Comparing NO with NO/O $_2$  (experiments c and d), the amount of adsorbed NO in the absence of O $_2$  was 0.0298 mmol g $^{-1}$ , whereas in the presence of O $_2$ , it was 0.038 mmol g $^{-1}$ . These data indicated that NO could be independently adsorbed on  $\gamma$ -Al $_2$ O $_3$  at 150 °C. Additionally, the amount of adsorbed NO increased in the presence of O $_2$ . In experiment c for NO in the absence of O $_2$ , oxygen-containing compounds were removed from the  $\gamma$ -Al $_2$ O $_3$  surface by purging with Ar at 600 °C for 1 h before adsorption. However, a trace of NO $_2$  still occurred in the outlet gas. This was likely that lattice oxygen of the  $\gamma$ -Al $_2$ O $_3$  participated in the oxidation reaction [12,13].

#### 3.1.2. Simultaneous adsorption of SO<sub>2</sub> and NO

Comparing the amount of adsorbed  $SO_2$  over  $\gamma$ - $Al_2O_3$  under  $SO_2/NO$  and  $SO_2$  atmospheres (experiments e and a in Table 1), the amount of adsorbed  $SO_2$  for simultaneous adsorption of  $SO_2$  and NO was higher than that in the absence of NO, which indicated that NO enhanced the adsorption of  $SO_2$ .

Comparing  $SO_2/NO$  with NO (experiments e and c in Table 1), although the amount of adsorbed NO was almost the same,  $NO_2$  was also detected in the outlet gas for simultaneous adsorption of  $SO_2$  and NO. Based on thermodynamics, it was unlikely that the oxygen of  $NO_2$  was from  $SO_2$ . Thus, the oxidation of NO may be attributed to the lattice oxygen of  $\gamma$ -Al $_2O_3$  with  $SO_2$ , which promoted this oxidation reaction.

When  $SO_2/NO/O_2$  was compared with  $SO_2/NO$  (experiments f and e in Table 1), both the amounts of adsorbed  $SO_2$  and NO were significantly higher than in the absence of  $O_2$ . This observation revealed that  $O_2$  facilitated the simultaneous adsorption of  $SO_2$  and NO, whereas NO promoted the adsorption of  $SO_2$  and vice versa.

#### 3.1.3. Sequential adsorption of SO<sub>2</sub> and NO

Comparing  $SO_2/O_2$  over "nitrated  $Al_2O_3$ " with  $SO_2/O_2$  over "clean  $Al_2O_3$ " (experiments h and b in Table 1), the amount of adsorbed  $SO_2$  over the "clean  $Al_2O_3$ " was  $0.321 \, \text{mmol} \, \text{g}^{-1}$ , whereas that over the "nitrated  $Al_2O_3$ " increased to  $0.377 \, \text{mmol} \, \text{g}^{-1}$ . Thus, pre-adsorbed NO species on  $Al_2O_3$  promoted  $SO_2$  adsorption. Moreover, in experiment h,  $SO_2/O_2$  was exposed to "nitrated  $Al_2O_3$ " after  $NO/O_2$  was saturated on the  $Al_2O_3$  and NO and  $NO_2$  were detected in the outlet gas. It might have been that some adsorbed NO species on the  $Al_2O_3$  were replaced by  $SO_2$  due to its stronger acidity, leading to the discharge of NO and  $NO_2$  into the outlet gas.

When  $NO/O_2$  over "sulphated  $Al_2O_3$ " was compared with "clean  $Al_2O_3$ " (experiments g and d in Table 1), the amount of adsorbed NO increased by 27%, which indicating that pre-adsorbed  $SO_2$  species on  $Al_2O_3$  promoted NO adsorption. In the  $PreSO_2$  experiment (experiment g in Table 1), the desorbed  $SO_2$  was 0.0533 mmol g $^{-1}$ , whereas that for  $SO_2/O_2$  over "clean  $Al_2O_3$ " was 0.014 mmol g $^{-1}$  (experiment b in Table 1) by sweeping with Ar. The reason for this phenomenon was probably that some pre-adsorbed  $SO_2$  was replaced by NO. In conclusion, both the adsorption of  $SO_2$  on nitrated  $Al_2O_3$  (PreNO) and NO on sulphated (PreSO $_2$ ) were promoted regardless of the sequence of exposure for  $SO_2$  or NO.

#### 3.2. DRIFTS studies of adsorbed species

#### 3.2.1. Separate adsorption of SO<sub>2</sub> and NO

The surface species formed from the reaction of  $SO_2$  or NO on  $Al_2O_3$  were studied by DRIFTS (Fig. 1). Fig. 1(a, b and i) shows the spectra of  $SO_2$  or  $SO_2/O_2$  adsorption on  $Al_2O_3$  and the desorption after  $SO_2/O_2$  saturation at  $150\,^{\circ}$ C for 1 h.

Datta et al. [14] identified at least five different adsorption  $SO_2$  sites on  $Al_2O_3$ : a species physically adsorbed on hydroxyl groups (Al–OH– $SO_2$ ) with bands at 1334 and 1148 cm<sup>-1</sup>, a weakly chemisorbed species (Al–O– $SO_2$ ) with bands at 1322 and1140 cm<sup>-1</sup>, two species chemisorbed on acidic (positively charged aluminium ions,  $Al-SO_2$ )  $Al^{3+}$  sites with bands at 1255 and 1189 cm<sup>-1</sup>, and one strongly chemisorbed species ( $Al-SO_3$ ) with a broad band at approximately 1060 cm<sup>-1</sup>. As seen from spectra (a) and (b), the bands at 1325 cm<sup>-1</sup> were observed and assigned to a weakly chemisorbed species ( $Al-O-SO_2$ ) [15]. In addition, the bands between 1200 and 1000 cm<sup>-1</sup> might all be characteristic peaks of mixtures of the above-mentioned  $SO_2$  surface species.

It was noted that the intensity for the bands from spectrum (b) was greater than that from spectrum (a). Additionally, the increase in intensity at  $1325 \, \mathrm{cm}^{-1}$  indicated that  $O_2$  had an effect on  $SO_2$  chemisorption at  $150\,^{\circ}$ C, which probably enhanced  $SO_2$  adsorption on  $O^2$ – basic sites of  $Al_2O_3$  (Al–O– $SO_2$ ). In the literature, Andersson et al. [16] reported that the amount of  $SO_2$  adsorbed in the presence of  $O_2$  was much higher than that absorbed in the absence of  $O_2$ . The results (seen from experiments b and a in Table 1) were in agreement with Andersson's report. It was probable that  $O_2$  formed new basic sites at the lattice defect-sites on  $Al_2O_3$ , thus increasing the amount of Al–O– $SO_2$  species present. Furthermore, compared with spectrum (b), the intensity for bands of spectrum (i) at 1325 and  $1140\,\mathrm{cm}^{-1}$  decreased, indicating that adsorbed  $SO_2$  was bonded to  $O^2$ – basic sites through the sulphur atom (Al–O– $SO_2$ ), a weak surface species readily desorbed by sweeping in Ar at  $150\,^{\circ}$ C.

Fig. 1(c and d) displays representative DRIFTS data for  $Al_2O_3$  exposed to NO at  $150\,^{\circ}$ C. The bands in the region from 1640 to  $1000\,\mathrm{cm}^{-1}$  were assigned to surface nitrate and nitrite species [17].

#### Download English Version:

## https://daneshyari.com/en/article/578953

Download Persian Version:

https://daneshyari.com/article/578953

<u>Daneshyari.com</u>