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a b s t r a c t

Recently, there is an increasing interest on semi- and non-parametric methods for genome-enabled
prediction, among which the Bayesian regularized artificial neural networks (BRANN) stand. We aimed to
evaluate the predictive performance of BRANN and to exploit SNP effects and heritability estimates using
two different approaches (relative importance-RI, and relative contribution-RC). Additionally, we aimed
also to compare BRANN with the traditional RR-BLUP and BLASSO by using simulated datasets. The
simplest BRANN (net1), RR-BLUP and BLASSO methods outperformed other more parameterized BRANN
(net2, net3,… net6) in terms of predictive ability. For both simulated traits (Y1 and Y2) the net1 provided
the best h2 estimates (0.33 for both, being the true h2¼0.35), whereas RR-BLUP (0.18 and 0.22 for Y1 and
Y2, respectively) and BLASSO (0.20 and 0.26 for Y1 and Y2, respectively) underestimated h2. The marker
effects estimated from net1 (using RI and RC approaches) and RR-BLUP were similar, but the shrinkage
strength was remarkable for BLASSO on both traits. For Y1, the correlation between the true fifty QTL
effects and the effects estimated for the SNPs located in the same QTL positions were 0.61, 0.60, 0.60 and
0.55, for RI, RC, RR-BLUP and BLASSO; and for Y2, these correlations were 0.81, 0.81, 0.81 and 0.71,
respectively. In summary, we believe that estimates of SNP effects are promising quantitative tools to
bring discussions on chromosome regions contributing most effectively to the phenotype expression
when using ANN for genomic predictions.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Over the last years, several parametric methods such as RR-
BLUP, Bayes A, B, Cπ and BLASSO have been proposed to genome-
enabled prediction. However, recently there is an increasing ap-
plication of semi- and non-parametric methods, among which the
artificial neural networks (ANN) has aroused some research in-
terest. In summary, one of the theoretical advantages of ANN is the
flexibility, since it is not necessary to make a priori assumptions
about the relationships between inputs, e.g., SNP genotypes, and
output as phenotypic observations. Furthermore, ANN has great
flexibility to handle different types of complex non-additive effects
such as epistasis (Felipe et al., 2014; Howard et al., 2014), which
currently is a hot topic in the field of Statistical Genomics (Beam

et al., 2014).
Despite this advantage, it is expected that ANN complexity and

the number of markers are directly associated. It may lead to
overfitting and consequently to poor predictive performance. For
an empirical control of model complexity, the weights of ANN can
be regularized. Under a Bayesian approach, the regularization is
obtained by treating the weights as random variables following
specific prior distributions (Okut et al., 2011). This special class of
ANN is called Bayesian regularized artificial neural networks
(BRANN).

Although BRANN have been shown to be effective for genome-
enabled prediction in animal breeding (Gianola et al., 2011, Perez-
Rodriguez et al., 2013), biological interpretation from the marker
effects (related to QTL detection) and genetic parameter (herit-
ability) estimates have been underexploited. Thus, we aimed to
apply BRANN to genome-enabled prediction and to exploit SNP
effects and heritability estimates using two different approaches.
Additionally, we aimed also to compare BRANN with the
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traditional RR-BLUP and BLASSO by using simulated datasets.

2. Materials and methods

2.1. Simulated data set

The data was simulated according to Usai et al. (2014). The base
generation (GEN0) was composed by 1020 (20 males and 1000
females) unrelated individuals. Each one of the next four non-
overlaping generations (GEN1, GEN2, GEN3 and GEN4) consisted
of 20 males and 1000 females from GEN0 by randomly mating
each male with 50 females. It was considered that each female
originated one female, except for 20 of them, which produced two
individuals (one male and one female). The pedigree was com-
posed by 4100 individuals (males only from GEN0 and all the in-
dividuals from GEN1 to GEN4).

The simulated genome comprised five chromosomes, each one
with a size of 99.95 Mb carrying 2000 equally distributed SNPs (1
SNP per 0.05 Mb). The GEN0 haplotypes were generated in order to
obtain fixed LD decay (r2E0.07 on 1000 kb) and MAF (E0.28)
distribution. A total of 50 SNPs were randomly sampled and
treated as QTLs, whose effects were generated from a gamma
distribution with scale and shape parameters equal to 5.4 and
0.42, respectively. The sum of the QTLs’ additive effects over each
individual was used to define the true breeding values (TBV). Two
traits (Y1 and Y2), whose the difference between them was the
QTL positions on the genome, were generated assuming herit-
ability equal to 0.35.

The phenotype of each individual was given by the true
breeding value plus the random residual effect sampled from a
normal distribution with mean zero and variance that ensures the
heritability equal to 0.35. Data of 3000 females from GEN1 to GEN3

were used in the training population, so that the rest of the po-
pulation (1020 individuals from GEN4) were considered for
validation.

The phenotype, TBV, and genotype files (including the map
with known SNP location and tue QTLs on each chromosome) are
available in the following electronic address: http://qtl-mas-2012.
kassiopeagroup.com/en/dataset.php.

2.2. Feed-forward ANN

In summary, training algorithms of ANN were used to describe
the interrelationships among the input data based on different
levels of learning organized in the so called layers. Each layer is
divided into units called neurons, which regulate specific weights
for the predictor variables by means of linear and non-linear ac-
tivation functions. In the field of genome enabled prediction, the
general idea behind ANN use is to describe complex relationships
between phenotypes (response variable) and genotypes (predictor
variables). Once understood this relationship pattern, the ANN is
trained and apt to make predictions of phenotypes based on new
genotypic values.

The feed-forward ANN (FFANN) assumes that the output of any
layer does not affect that same layer, only the next one (there is no
feedback). The simplest FFANN consists of three layers. The input
layer (IL) is given by genotypes of P markers for N individuals. The
IL is connected to a hidden layer (HL) with T neurons), which in
turn is connected to an output layer (OL) with only one neuron.
These connections are directed by means of estimated weights
that measure the influence of the predictor variables on the re-
sponse variable. Additionally to the weights, a bias, also called
intercept, is also estimated.

The mentioned FFANN can be described using the input gen-
otype matrix X with N rows (i¼1, 2,…, N) and P columns (j¼1, 2,

…, P). Each element of X is given by xij, with values �1 (aa), 0 (aA)
or 1 (AA). The HL is composed by T neurons (t¼1, 2,…, T), each one
generating a vector of weights, [ ]w1j

t , plus a vector of bias, bt. This
resultant linear combination (1) is then transformed using an ac-
tivation function (·)f , thus generating the output [ ]ai

t of the neuron t
for the individual i:
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The activation function can be either linear or non-linear and
has to be monotonically increasing. A non-linear activation func-
tion in the HL gives the neural network a greater flexibility than
standard linear regression models (Bishop, 2006). In the OL, the T
derived output scores for individual i from HL are now considered
as input in a new linear combination (2), that is transformed using
an activation function (·)g . Thus, the final output (yi) for individual
i depends on new estimated weight vectors w2t and one scalar bias
(b):
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In sequence, the results are back-propagated in order to update
the weights and biases, which can be seen as the unknown para-
meters to be estimated under a statistical viewpoint.

2.3. Bayesian regularized artificial neural network (BRANN)

Based on our experience, the ANN complexity increases as the
number of markers increases, and overfitting and poor predictive
performance are corollaries. For an empirical control of this
complexity, the weights of the FFANN can be regularized. Under a
Bayesian approach, the regularization is obtained by treating the
weights as random variables following specific prior distributions.

Okut et al. (2011) and Gianola et al. (2011) proposed the
Bayesian regularized artificial neural network (BRANN) for pre-
dicting complex phenotypes from genomic data. In summary, the
posterior distribution for the weights from a BRANN can be ac-
cessed based on Bayes theorem terms:

( | α γ )= ( | γ ) ( |α )
( |α γ ) ( )

P w Y, , ,M
P Y w, ,M P w ,M

P Y , ,M
,

3

in which ( | α γ )P w Y, , ,M is the posterior distribution; ( | γ )P Y w, ,M is the
likelihood function; ( |α )P w ,M is the prior distribution for the
weights vector; and ( |α γ )P Y , ,M is the normalization factor, also
called marginal likelihood. In this context, Y represents the ob-
served data (genotype matrix and observed phenotype values); w
is the unknown weights vector; M represents the architecture of
the neural network (such as a given model in the traditional re-
gression framework); and α and γ are the regularization para-
meters that control the trade-off between goodness of fit and
smoothing. The number of weights to be estimated in a BRANN is
considerably smaller than the number of weights in a standard
FFANN, because the regularization shrinks unnecessary weights
towards zero, effectively eliminating them.

Although BRNN has been shown to be effective for genomic
enabled prediction, unlike the traditional parametric models (such
Bayesian regressions), BRNN do not provide direct estimates of
marker effects and variance components. In this context, we ap-
plied two different methods for the identification of input variable
relevance in ANN to access SNP effect estimates under the BRANN
viewpoint.

The trainbr function of Neural Network Toolbox™ of MATLAB
s

(Beale, et al., 2010) was used for the BRANN implementation. Six
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