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ARTICLE INFO ABSTRACT

Genome-wide prediction of complex traits has become increasingly important in animal
and plant breeding, and is receiving increasing attention in human genetics. Most

Keywords:

An)i/mal breeding common approaches are whole-genome regression models where phenotypes are
Cross validation regressed on thousands of markers concurrently, applying different prior distributions
Genome wide prediction to marker effects. While use of shrinkage or regularization in SNP regression models has
Machine lear{ling delivered improvements in predictive ability in genome-based evaluations, serious over-
Nonparametric fitting problems may be encountered as the ratio between markers and available

Predictive accuracy phenotypes continues increasing. Machine learning is an alternative approach for

prediction and classification, capable of dealing with the dimensionality problem in a
computationally flexible manner. In this article we provide an overview of non-parametric
and machine learning methods used in genome wide prediction, discuss their similarities
as well as their relationship to some well-known parametric approaches. Although the
most suitable method is usually case dependent, we suggest the use of support vector
machines and random forests for classification problems, whereas Reproducing Kernel
Hilbert Spaces regression and boosting may suit better regression problems, with the
former having the more consistently higher predictive ability. Neural Networks may suffer
from over-fitting and may be too computationally demanded when the number of
neurons is large.

We further discuss on the metrics used to evaluate predictive ability in model
comparison under cross-validation from a genomic selection point of view. We suggest
use of predictive mean squared error as a main but not only metric for model comparison.
Visual tools may greatly assist on the choice of the most accurate model.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

“ This paper is part of the special issue entitled: Genomics Applied to

Livestock Production, Guest Edited by Jose Bento Sterman Ferraz. The availability of technology for assaying thousands of
* Corresponding author at: Biosciences Research Division, Department genomic variants simultaneously in a cost-effective way
Sigg‘éggnmﬁ;gd Primary Industries, Agribio, 5 Ring Road, Bundoora, has revolutionized the paradigm of prediction of genetic
E-mail addresses: oscar.gonzalez-recio@depi.vic.gov.au (O. Gonzalez- merit or phenot.ypes of lgdwlduals fis well as animal
Recio), grosa@wisc.edu (G.J.M. Rosa), gianola@ansci.wisc.edu (D. Gianola). and plant breeding strategies (Meuwissen et al., 2001).
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Fig. 1. Relationship between the number of marker effects to be
estimated in regression models and the number of genotyped individuals
with phenotype in livestock populations.

New statistical approaches have been developed for deal-
ing with the “large p small n problem” (p: number of markers,
n: sample size) because, typically, only a few hundred or
thousands of individuals are genotyped whereas the number
of molecular markers is much larger, and it is constantly
increasing due to technological changes (Fig. 1). For instance,
in 2008 and 2009 the number of markers available in single
nucleotide polymorphism (SNP) chips for livestock species (e.
g., bovine, swine, sheep) was around 50,000 and the largest
data set represented between 1000 and 4000 individuals
genotyped (Gonzalez-Recio et al., 2008; Moser et al., 2009;
VanRaden and Sullivan, 2010). Hence, at that time, the p:n
ratio was between 12.5 and 50. Around 2010, some higher
density chips appeared (e.g., BovineHD beadchip of Illumina),
covering 777,000 markers whereas the larger consortia in
dairy cattle (North American consortium and Eurogenomics)
included around 16,000 genotyped animals with phenotypes,
which represents a ratio of 48.5 marker effects to be estimated
per phenotype available in the sample (Lund et al., 2011).

Use of sequencing technologies places further chal-
lenges because several million of variants per individual
may need to be taken into account in predictive models.
Although the larger international consortiums are pro-
jected to expand to reach around 30,000 individuals with
phenotypes, this is yet a p:n ratio of 80-100. Thus, the
dimensionality problem is becoming more and more acute
in recent years, with major implications at the level of
statistical inference (Gianola, 2013).

While use of shrinkage or regularization in SNP regres-
sion models, e.g., Bayes A, Bayes B, Bayes C, BayesCpi,
Bayesian Lasso, Bayes R (see Gianola, 2013 for a discus-
sion), has delivered improvements in predictive ability in
genome-based evaluations (de los Campos et al., 2013),
serious over-fitting problems may be encountered where
p:n exceeds 50-100. Models using genomic similarity
matrices between individuals alleviate the dimensionality
problem by capturing ‘overall’ signals while still exploiting
multi-locus linkage disequilibrium between the unknown
(and elusive) QTLs and the markers (Habier et al., 2007).

Machine learning is an alternative approach for prediction
and classification, capable of dealing with the dimensionality

problem in a flexible manner. Bayesian regression methods
cope with regularization by assigning different prior distribu-
tions (purportedly aiming to reflect “genetic architecture”) to
marker effects. However, machine learning approaches pro-
vide a larger and more general suite of flexible methods for
this purpose. Several studies using Reproducing Kernel Hilbert
Spaces Regression (RKHS), Neural Networks (NN), Support
Vector Machines (SVM), Random Forests (RF) and Boosting
have been used for genome-enabled prediction in livestock
and plants (Gonzalez-Recio and Forni, 2011; Long et al., 2011a,
2011b; Ober et al., 2011; Vazquez et al,, 2012; Gonzalez-Recio
et al, 2013; Crossa et al, 2014). This article provides an
overview of non-parametric methods that have been applied
to genome-wide prediction (GWP) in animal breeding so far.
Subsequently, we outline two non-parametric alternatives for
coping with the high dimensionality problem arising in
sequence-assisted evaluation. Finally, we discuss pros and
cons of metrics used for assessing predictive ability in cross-
validation of models implemented in genomic evaluation, and
suggest non-parametric alternatives for this purpose. This
paper does not address design of cross-validations, which
have been reviewed elsewhere (e.g. Hastie et al, 20009,
241 pp.).

2. Non-parametric models used in genome-assisted
prediction

Most machine learning approaches to genome assisted
evaluation are based on regressing phenotypes on some
function of SNP genotype codes g(x), as

g1(X1)
82(X2)

y=1u+

8n(Xn)

This function g;(x;) (i denotes individual and x; is the
observed p-dimensional genotype of i) is assumed to be an
approximation to the true genetic merit of each individual,
after adjusting phenotypes for environmental effects and
expressing the latter as a deviations from the population
mean, y. Then, 1 is a column vector of ones. The correction
for nuisances can be done model-wise, but we assume the
data have been pre-corrected in some reasonable manner,
for simplicity. The vector e represents residuals, typically
assumed N(0,I62), where I is an n x n identity matrix and
o2 is a residual variance.

When g(x;) = Z}’z 1Xif;, where x; is a code for the
genotype at marker j on individual i, the model reduces to
a linear regression, considered here as a parametric
approach, typically because regression coefficients have an
interpretation in the light of additive gene action theory. A
recent review of linear models applied in GWP is in de los
Campos et al. (2013). Machine learning methods, including
non-parametric regression, do not assume linear and addi-
tive action of markers a priori, but the type of function
given by g(x) determines the learning attained. Here, we
will describe and discuss functions defining a RKHS, SVM,
boosting, RF and NN. The first two methods are based on a
single function with good learning ability (i.e., a strong
learner), whereas the others can be viewed as combinations
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