

Available online at www.sciencedirect.com

CATALYSIS TODAY

Catalysis Today 117 (2006) 584-587

www.elsevier.com/locate/cattod

Catalytic properties of novel La–Sr–Cu–O–S perovskites for automotive C_3H_6/CO oxidation in the presence of SO_x

M. Machida*, K. Ochiai, K. Ito, K. Ikeue

Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan

Available online 11 July 2006

Abstract

A La–Sr–Cu–O–S system with K_2NiF_4 perovskite-type structure has been studied as a novel SO_x-resistant combustion catalyst. The XRD result implied that sulfur is incorporated into the structure as non-sulfate-type cations. An introduction of sulfur with highly positive valence (S⁶⁺ or S⁴⁺) into the lattice requires the charge compensation by decreasing the oxidation number of Cu. This is accompanied by the creation of more reducible Cu species, which would achieve the light-off of catalytic C₃H₆ oxidation at lower temperatures. More important feature of sulfur-containing compounds is that the catalytic C₃H₆ oxidation was significantly accelerated by addition of SO₂ to the gas feed. The catalytic performance for the oxidation of C₃H₆ and CO and the reduction of NO was finally evaluated in a simulated automotive exhaust in the presence of SO₂. (C) 2006 Elsevier B.V. All rights reserved.

Keywords: Perovskite; Sulfur; Oxidation; Redox; Cu; C3H6

1. Introduction

Metal oxides with perovskite-type structure have extensively been studied as alternatives to noble metal catalysts for automotive emission control since 1970s [1]. The compounds which contain Mn or Co in the B-site of the perovskite structure are known as one of most active catalysts for the oxidation of hydrocarbons as well as CO. However, a serious problem is deactivation due to sulfur (SO₂) poisoning, because solid-gas reactions between SO₂ and perovskites are inevitable at high temperatures. Because many perovskite oxides contain alkaline earth or rare earth metals with a high basicity, the formation of sulfates from oxides is thermodynamically favorable in a wide temperature range. Several attempts have been made so far to overcome this problem by introducing Ru or Pt oxide less sensitive to SO₂ poisoning [2-4] and MgO as preferential adsorption site for SO₂ [5], or by seeking for sulfur bearing catalyst compositions [6-8]. Nevertheless, the development of SO₂-resistant perovskite catalysts remains unsolved even in the present stage. For the reason, a novel approach to design SO_{x} - resistant perovskite catalysts is strongly requested. In the present study, K_2NiF_4 -type perovskite-related compounds, La–Sr–Cu–O–S, have been studied as a novel SO₂-resistant catalyst material. The effect of SO₂ in catalytic C₃H₆/CO oxidation was evaluated not only in a microreactor but also in an automotive-simulated reactor.

2. Experimental

La_{2-x}Sr_xCuO₄S_y ($0 \le x \le 0.3$, $0 \le y \le 0.3$) compounds were synthesized by calcining stoichiometric mixtures of La₂O₃, SrCO₃, CuO, and CuSO₄ at 950 °C in air. The characterization was done by XRD, XRF, IR, XPS, TG, and TPR. The TPR measurement was conducted in a conventional flow reactor connected to a differential evacuation system. After evacuation at ambient temperature, the sample was heated in a flowing gas mixture of 10% H₂ and He (20 cm³ min⁻¹) at a constant rate (10 °C min⁻¹) up to 950 °C. Effluent gas from the sample was analyzed by a quadrupole residual gas analyzer mass spectrometer. Catalytic oxidation of C₃H₆ was examined in a conventional flow reactor at atmospheric pressure. The light-off characteristic was evaluated in a microreactor by heating the catalysts (0.2 g) from room temperature to 800 °C at constant rate of 2 °C min⁻¹ in a gaseous mixture of C₃H₆

^{*} Corresponding author. Tel: +81 96 342 3651, fax: +81 96 342 3651. *E-mail address:* machida@chem.kumamoto-u.ac.jp (M. Machida).

^{0920-5861/}\$ – see front matter O 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.cattod.2006.06.009

(0.2%), O₂ (0.5 or 5%), and N₂ (balance) supplied at 100 cm³ min⁻¹ (W/F = 0.002 g cat. min cm⁻³). The sensitivity to SO₂ poisoning was evaluated during isothermal catalytic oxidation of C₃H₆ at ca. 400 °C by adding 20 ppm SO₂ to the gas feed and monitoring the change in C₃H₆ conversion to CO₂. Catalytic reactions were also carried out in a simulated automotive exhaust; 0.1% C₃H₆, 0.65% CO, 0.15% NO, 3% H₂O, 10 or 0.7% O₂, at space velocity (SV) of 200,000 h⁻¹.

3. Results and discussion

Perovskite oxides containing sulfur can be found in a series of studies directed toward high-temperature superconducting materials in 1990s. One example is the K₂NiF₄-type cuprate system, La_{1.85}Sr_{0.15}Cu_{1-x}O_{4-x}(SO₄)_x, in which sulfur is considered to be present in the form of sulfate ions (SO₄²⁻) substituting ca. 10% of Cu site [9]. Another compound, Ba₄YCu_xO₉(SO₄)_y, which was also reported to contain SO₄ units substituting part of the Cu site in the structure, can accommodate larger amounts of sulfur up to y = 0.8 [10]. Although these materials are thermally stable, the catalytic property, chemical state, and stability of sulfur species in the perovskite structure have not been studied so far.

Fig. 1 shows the XRD patterns of $La_{2-x}Sr_xCuO_4S_{0,2}$ ($0 \le x \le 0.3$). As prepared compounds contained almost stoichiometric sulfur, but part of sulfur was deposited as $La_2O_2SO_4$ at lower *x* and as $SrSO_4$ at higher *x*. The composition with minimal impurities were determined to be x = 0.3. The diffraction pattern of the main phase is very similar to that of the $La_{1.85}Sr_{0.15}Cu_{1-x}O_{4-x}(SO_4)_x$ [9], but our X-ray structural analysis by means of the Rietveld method led to a different conclusion [11]. Fig. 2 shows the crystal structure model of the product with y = 0 and 0.2. The structural parameters for y = 0is very similar to that reported for this material [12], in which La and Sr are distributed randomly in the A-site. For y = 0.2, sulfur is located in the interstitial site between adjacent two

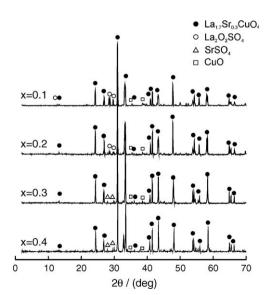


Fig. 1. XRD patterns of La_{2-x}Sr_xCuO₄S_{0.2} after calcination at 950 °C in air.

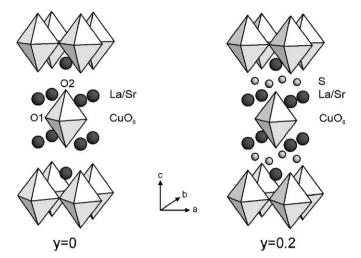


Fig. 2. Crystal structure of K_2NiF_4 -type $La_{1.7}Sr_{0.3}CuO_4$ (y = 0) and $La_{1.7}Sr_{0.3}$ -CuO₄S_{0.2} (y = 0.2).

perovskite layers. Sulfur in this site is surrounded by four oxygens, but the S–O bond length (0.21 nm) is larger than that (0.15 nm) in a tetrahedral SO_4^{2-} ion. The compound contained about 50% of sulfur in the site in the K₂NiF₄ lattice, whereas other sulfur would be deposited as impurity (SrSO₄).

The XRD analysis of the present study suggests that sulfur in the K₂NiF₄-type cuprate is not a sulfate. This is consistent with FT-IR results with no obvious absorption due to SO₄ groups. The XPS measurement showed the S 2p signals ($E_B = 169$ and 167 eV) similar to S⁶⁺ and S⁴⁺. Although part of the S⁶⁺ signal comes from a SrSO₄ impurity, sulfur species in the structure should have highly positive valences. The TG analysis of La_{1.7}Sr_{0.3}CuO₄S_y in a flowing H₂ showed that the oxidation number of Cu was decreased with increasing the S content. This is reasonable because the positive valence of sulfur in the lattice would be compensated by the oxidation number of Cu.

Thermal evolution of lattice oxygen as O_2 was very small from as prepared cuprates. Thus, the reduction behavior was studied by means of H₂-TPR technique as shown in Fig. 3.

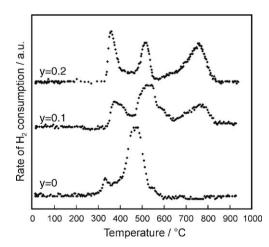


Fig. 3. TPR profiles of $La_{1.7}Sr_{0.3}CuO_4S_y$ in a stream of 5% H_2/He. Heating rate: 10 $^\circ C$ min $^{-1}.$

Download English Version:

https://daneshyari.com/en/article/57905

Download Persian Version:

https://daneshyari.com/article/57905

Daneshyari.com