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a  b  s  t  r  a  c  t

In  this  paper,  we  propose  a nonlinear  hierarchical  model  (NLHM)  for analyzing  longitudinal  experimen-
tal  infection  (EI)  data.  The  NLHM  offers  several  improvements  over  commonly  used  alternatives  such
as repeated  measures  analysis  of  variance  (RM-ANOVA)  and  the  linear  mixed  model  (LMM).  It enables
comparison  of relevant  biological  properties  of  the  course  of  infection  including  peak  intensity,  duration
and  time  to  peak,  rather  than  simply  comparing  mean  responses  at  each  observation  time.  We  illustrate
the  practical  benefits  of this  model  and  the  insights  it  yields  using  data  from  experimental  infection  stud-
ies  on  equine  arteritis  virus.  Finally,  we  demonstrate  via  simulation  studies  that  the  NLHM  substantially
reduces  bias  and  improves  the power  to detect differences  in  relevant  features  of  the infection  response
between  two  populations.  For  example,  to detect a 20%  difference  in  response  duration  between  two
groups  (n =  15)  in  which  the  peak  time  and  peak  intensity  were  identical,  the  RM-ANOVA  test  had  a
power  of  just  11%,  and  LMM  a power  of just  12%.  By comparison,  the  nonlinear  model  we  propose  had
a  power  of  58%  in  the  same  scenario,  while  controlling  the  Type  I  error  rate  better  than  the  other  two
methods.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Experimental infection (EI) studies have played a central role in
infectious disease research and epidemiology for more than two
hundred years (Franco 2013; Academy of Medical Sciences, 2005).
Often in EI studies, the aim is to determine whether the trajectory
of the mean infection response differs in a treatment group rel-
ative to a control group. A straightforward approach to carrying
out an EI study is to collect data at m fixed times, t1, t2,. . .,tm and
estimate separately the mean responses �1, �2,. . .,�m at each of
those time points, where the time of infection is t = 0. One can then
test whether, say, �1 differs from �5 within a group – a “horizon-
tal” contrast – or whether �3 differs between groups – a “vertical”
contrast (Ludbrook, 1994).

Because the number of possible such tests is large, it is desir-
able to test simultaneously for whether �j is equal between groups
across all times j=1,2,...,m.  In general, this type of test is known as
an ANOVA; however, because there are multiple measurements per
subject, some adjustments must be made. The oldest and simplest
way of making these adjustments is to introduce a single, subject-
specific random effect and recalculate the various sums of squares

∗ Corresponding author.
E-mail address: msingle@email.uky.edu (M.D. Singleton).

involved in the ANOVA test. This approach is known as RM-ANOVA
(Davis, 2003). One way  of extending the basic RM-ANOVA model
is to allow multiple subject-specific effects for each individual, one
for each time point, instead of a single subject-specific effect as in
the RM-ANOVA model. This type of model falls under a very broad
class of models known as the linear mixed model, or LMM (Laird
and Ware, 1982). RM-ANOVA and LMM  are two very commonly
used approaches to analyzing data from EI studies to detect group
differences in the response to a pathogen (Munhoz et al., 2012; Go
et al., 2012; Naylor et al., 2003).

A limitation of using these approaches for EI studies is that EI
data tend to be strongly nonlinear. Following challenge there is
typically a brief incubation period followed by an interval of rapid
increase (the “onset” phase of the response). After the maximum
or minimum value is achieved, there is a return to a stable base-
line level (the “recovery” phase). This pattern has been referred
to as a peaked response to distinguish it from growth curve data
(Matthews et al., 1990). Peaked responses come in a variety of
forms, but here, we restrict our attention to experiments in which
there is exactly one challenge point, with a single-peaked response
and a common pre- and post-challenge baseline level.

Many relevant research questions may  be posed in terms of
one or more features of a single-peaked infection response curve.
For example, an investigator may  be interested in whether a
vaccine reduces the peak, total amount, or duration of viral shed-

http://dx.doi.org/10.1016/j.prevetmed.2016.06.006
0167-5877/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.prevetmed.2016.06.006
http://www.sciencedirect.com/science/journal/01675877
http://www.elsevier.com/locate/prevetmed
http://crossmark.crossref.org/dialog/?doi=10.1016/j.prevetmed.2016.06.006&domain=pdf
mailto:msingle@email.uky.edu
dx.doi.org/10.1016/j.prevetmed.2016.06.006


130 M.D. Singleton, P.J. Breheny / Preventive Veterinary Medicine 130 (2016) 129–136

ding; whether a certain genetic factor alters the kinetics of the
immune response (e.g. maximum decrease in lymphocyte count);
or whether two strains of the same virus differ in their effect on the
intensity or duration of measurable disease signs such as fever (vir-
ulence studies). In transmission studies, interest centers on factors
that may  influence the transmission of infection. Here the timing
or peak intensity of viremia, or the total amount of virus excreted,
in subjects exposed to infected hosts, may  be informative.

RM-ANOVA and LMM  are not well-suited for addressing these
types of questions, because they do not explicitly model the mean
response curves and their salient features. There is also reason to
expect that they will have less power to find a difference at any
measurement occasion, even when differences in peak intensity
and duration do, in fact, exist. This is because it is inefficient to
estimate the mean at every time point when there is a clear and
consistent pattern in the individual response profiles, particularly
when the number of measurement occasions is large.

The objective of this paper is to present a nonlinear hierarchical
model (NLHM) for single-peaked response variables. We  demon-
strate the application of the model and the insights it provides
using data from actual EI studies on equine arteritis virus. Via sim-
ulation studies we assess the performance of the model, in terms
of bias, power and type I error control. Finally, we  discuss recom-
mendations for the applying the proposed model in practice, and
for designing studies to collect sufficient data for estimating the
parameters of interest.

2. A nonlinear hierarchical model for EI studies

We  propose a method that directly represents the quantities of
biological interest (intensity, duration, time until peak response) in
an EI study. To accomplish this goal we will employ a class of mod-
els known as the nonlinear hierarchical model or NLHM (Davidian
and Giltinan, 1995; Vonesh and Chinchilli, 1997). NLHMs have been
applied in many fields, most prominently in pharmacokinetics and
pharmacodynamics research (Sheiner et al., 1972), but to the best of
our knowledge, have not been used to analyze data from EI studies.

2.1. Specification of the model

To make the presentation of our NLHM more concrete, consider
a hypothetical study to determine whether a vaccine reduces the
intensity and/or duration of lymphopenia in horses following infec-
tion with equine influenza virus (EIV). Two groups of 10 horses
are selected at random from a source population. One group is
vaccinated against EIV and the other group receives a sham vacci-
nation (normal saline solution). Two weeks after vaccination, both
groups are challenged with EIV and followed for six weeks. Blood
samples are drawn on all animals on days that we  will refer to as
t1, t2,...tm, where m represents the number of measurement occa-
sions. We  denote the observed lymphocyte counts for horse i as
yi1, yi2, . . .,  yim. For simplicity we are assuming that m is the same
for all animals, but the NLHM does not require this to be the case.

Our NLHM consists of two models that are coupled together in a
hierarchical structure. At the lower level is the model for the mean
response trajectories of the individual horses in the vaccine and
control groups.

Level 1 (Individual mean response trajectories)

yijg = f
(

tj, ˇig

)
+ eij, eij∼N(0, �2) (1)

Here the letter g indexes the groups (g=1 for the vaccine group and
g=2 for the control/sham group), i indexes the individual horses in
a group (in our example i = 1,2,. . .,10 for both groups), and j indexes
the sampling times t1, t2,. . .,tm. Eq. (1) posits that for each horse in
our study, the lymphocyte counts we actually observe consist of
an unknown, systematic component, modeled as f

(
tj, ˇig

)
, plus

random noise. The noise in each observed lymphocyte count is
represented by the random variables eij , which are assumed to be
independent and normally distributed with mean zero and com-
mon  variance �2. Note that the trajectories share a common general
form dictated by f, but that each animal has unique parameters ˇig
that allow for individual differences in the features of the response.
For EI studies, it is reasonable to assume that f has a single-peaked
shape that rises to a maximum intensity and returns to baseline as
the infection is cleared. In this paper, we  use the following func-
tional form for f:

f
(

tj, ˇig

)
= Big + Iigexp

[
−

(
tj − pig

)2

2s2
ig

]
(2)

Eq. (2) uses a Gaussian function to model the true mean
lymphocyte count trajectories. The parameters of this function rep-
resent biologically meaningful features of the individual responses.
The parameter p11, for example, represents the estimated peak
response time for horse 1 in the vaccine group. We  can think of p11
as dividing the lymphocyte trajectory for this horse into an onset
phase and a recovery phase. The symmetry of the Gaussian func-
tion implies an assumption that the onset and recovery phases of
the lymphocyte response have identical durations. B11 and I11 rep-
resent the baseline lymphocyte level and maximum lymphocyte
decline from baseline for the same horse. s11 can be considered an
index of the duration of lymphopenia. It is directly related to the full
width at half maximum (FWHM) of the estimated mean response
curve through the formula FWHM = 2s(2ln2)1/2.

It will often be the case that the assumption of symmetric
response trajectories is unrealistic. In such cases, the Gaussian
function in Eq. (2) can be replaced with a piecewise half-Gaussian
response function:

f
(

tj, ˇig

)
=

⎧⎪⎪⎪⎪⎨
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Big + Iigexp

[
−

(
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)2

2l2
ig

]
, tj ≤ pig

Big + Iigexp

[
−

(
tj − pig

)2

2r2
ig

]
, tj > pig

(3)

Because the two halves share common baseline, time-to-peak
and intensity parameters, the result is a smooth, continuous curve
over time, as shown in Fig. 1. The single scale parameter sig is
replaced by distinct onset and recovery scale parameters lig and
rig . These can be interpreted, respectively, as indices of the dura-
tion of the onset and recovery phases of infection. Note that lig
and rig are directly proportional to the half-widths of the onset
and recovery curves at half of their maximum intensity (HWHM):
HWHM-lig = lig(2ln2)1/2and HWHM-rig = rig(2ln2)1/2. The sum of
these terms can be interpreted as an index of total response dura-
tion. As an example, suppose that for horse 1 in the vaccine
group we estimated l11 = 1.5 and r11 = 4. Then, according to this
measure, onset lasted 1.5(2ln2)1/2 = 1.8 days and recovery lasted
4(2ln2)1/2 = 4.7 days, for a total duration of 6.5 days.

It should be noted that any unimodal function could be used for f.
In our experience with other unimodal functions such as Epanech-
nikov and tricube functions, the estimates of quantities such as
intensity and time to peak are not substantially affected by the
specific shape of f, nor is the computational difficulty of fitting the
model affected. We  used the Gaussian function here as it appeared
to best match the response shapes we have observed in real data.

Level 2 specifies a model for the population mean response tra-
jectory in terms of the individual mean response trajectories that
were modeled at Level 1. In our hypothetical vaccine efficacy study,
it is the relationship between these population mean lymphocyte
trajectories that is of primary interest.
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