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a  b  s  t  r  a  c  t

This study  aimed  to estimate  the between-  (HTP)  and  within-  (TP)  herd  true  prevalence  distribution  of
Mycobacterium  avium  subsp.  paratuberculosis  (MAP)  infection  in dairy  cattle  herds  participating  in the
Danish  MAP  control  programme.  All  herds  enrolled  in the  programme  between  2011  and  2013  were
included  in  the  analysis,  and  one  annual  milk-ELISA  test  of  all  lactating  cows  present  in  such  herds  was
considered.  A  Bayesian  latent  class  model  was  used  to  obtain  HTP  and  TP posterior  distributions  for  each
year.  The  model  adjusts  for  uncertainty  in age-specific  test  sensitivity  and  prior  prevalence  estimates.
Bayesian  posterior  probabilities  were  computed  in  order  to compare  prevalence  between  the  years.

A  total  of  665,700  samples  were  included  in  the study,  from  221,914,  224,040,  and  220,466  cows
sourced  from  1138,  1112,  and  1059  herds  in years  2011,  2012,  and  2013,  respectively.  In  that  period,
HTP  estimates  of  0.92  (95%  posterior  probability  interval  (PPI),  0.87–0.96),  0.78  (95%  PPI, 0.74–0.83),  and
0.75  (95%  PPI,  0.71–0.78)  were  recorded,  respectively.  Low  TP  were  observed,  with  population  mean
estimates  of  0.08 (95%  PPI,  0.07–0.08),  0.07  (95%  PPI,  0.07–0.08),  and  0.07  (95%  PPI,  0.06–0.07)  for  the
three  consecutive  years.  Statistically-important  differences  were  recorded  for  HTP  and  population  mean
TP estimates  between  years,  indicating  a trend  for a decreasing  level  of  MAP  infection  at both  herd  and
animal  level.  Model  results  showed  that  MAP  infection  was widespread  among  the  Dairy  cattle  herds
participating  in the  Danish  control  programme,  though  in  general  it was kept  at  very low  levels.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Mycobacterium avium subsp. paratuberculosis (MAP) causes
chronic infections in cattle and other ruminants. MAP infections
may  lead to significant losses to the dairy industry (Ott et al., 1999)
and consequently, several dairy-producing countries have initi-
ated control programmes to reduce the prevalence (Geraghty et al.,
2014). However, due to slow pathogenesis of the MAP  infections,
the most commonly used diagnostic tests lack sensitivity (Nielsen
and Toft, 2008), although the test-sensitivity does increase with age
(Nielsen and Toft, 2006). Furthermore, false-positive reactions are
common for both immunological and agent-based tests (Nielsen
and Toft, 2008; Kralik et al., 2014).
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Both false-positive and false-negative reactions pose a challenge
when declaring herds free from MAP  infection. However, Cameron
and Baldock (1998) proposed a method to determine freedom from
infection in a population where diagnostics were imperfect. Their
method requires a design prevalence, below which the herd is con-
sidered free-from infection. The low accuracy of MAP  diagnostics
renders their approach inadequate in confirming freedom from
MAP, unless the herd in question is large or the design prevalence
is high. Sergeant et al. (2008) proposed an alternative, where herd
classification was  based directly on an estimate of the probability
of having a low MAP  prevalence. A more direct measure can be used
in Bayesian analysis, where the probability of a herd being infected
(or non-infected) can be estimated directly from model outputs, as
described for Salmonella dublin in calf-rearing herds (Nielsen et al.,
2011). In the Bayesian model, we can include prior information
about sensitivity, specificity and prevalence, for example. S. dublin
diagnostics may  provide relatively high herd sensitivity, whereas
herd sensitivity for a MAP  diagnosis is dependent on the herd size
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and age-distribution. This information can also be included in the
Bayesian framework, in order to estimate the posterior probability
of a herd or an animal being infected. The resulting estimates can
be used to determine freedom from infection, while simultaneously
providing both within- and between-herd prevalence estimates of
MAP  infection, which can be used to monitor progress in the Danish
MAP  control programme.

Consequently, the objectives of this research were to esti-
mate the distributions of between-herd true prevalence (HTP) and
within-herd true prevalence (TP) of MAP  infection, along with the
probability of the individual herds participating in the Danish con-
trol programme being free from MAP  infection.

2. Material and methods

2.1. Study population and target condition

All dairy cattle herds enrolled in the Danish control programme
on MAP  during the years 2011–2013 were included in the study
(Nielsen and Krogh, 2014). Lactating cows in the enrolled herds
were automatically screened between one and four times per
year, using the commercial milk ELISA ID-Screen for MAP  antibody
detection (ID-Vet, Grabels, France). For the yearly prevalence esti-
mations, one sample was randomly selected from each cow every
year. Thereby, inclusion of animals providing different numbers of
samples (and their associated clustering) were avoided.

The target was to estimate the overall TP (oTP), which represents
the TP distribution across all infected herds. The mean TP (mTP),
understood as the average TP distribution between infected herds.
And the proportion of herds with at least one truly MAP  infected
animal (HTP).

2.2. Statistical analysis

2.2.1. Analytical model
Test results (yijk) included in the study were assumed to be dis-

tributed as Bernoulli, namely:
yijk∼Bernoulli(qijk),
with qijk being the probability of a positive test result for animal

i belonging to herd j during the year k, modelled as:

qijk = TPjk × Sei + (1 − TPjk) × (1 − Sp)

where TPjk is the true within-herd prevalence in a given herd dur-
ing a given year, and Sei and Sp are the animal-level test sensitivity
and specificity, respectively. Based on Nielsen et al. (2013), the
Sei was assumed to be age-specific and therefore specific to the
individual, whereas Sp presented a limited variability between indi-
viduals. Considering the current test interpretation protocol used
in the Danish control programme, where animals with a sample-to-
positive (S/P) ratio ≥0.2 are deemed positive, the Sei was  computed
as:

Sei = e1.32−9.38×e−0.7×agei

1 + e1.32−9.38×e−0.7×agei

where agei was the age in years of the individual. A mixture of point
mass at zero with a continuous distribution on (0,1) was used to
model TPjk

TPjk = Zjk × TP∗
jk

, with:
TP∗

jk
= beta(ak, bk), zjk∼Bernoulli(HTPk), ak = mTPk × vTPk, and

bk = (1 − mTPk) × vTPkwhere vTPk is the between herd variability
of mTPk.

Posterior distributions for HTPk and mTPk for the different years
were compared through computation of posterior probabilities
(POPR), determining the probability that a given year presented
a higher prevalence (either within or between herd) than the next

available year. For example, Pr(HTP2011 > HTP2012) is the probability
that HTP was higher in 2011 compared to 2012. This comparison
approach was  based on the hypothesis that control activities are
effective, and that a reduction in prevalence could therefore be
expected. A POPR is the proportion of Monte Carlo (MC) samples
out of all iterations, where the hypothesis tested was  true (Okura
et al., 2010), thus representing the direct probability of the event
occurrence. A difference was  regarded as statistically important if
the POPR ≥0.95.

2.2.2. Model priors, computation, and sensitivity analysis
The model uses four variable parameters (Sp,  HTPk, mTPk, and

vTPk) and one fixed parameter (Sei). Independent beta distribu-
tions were used to model Sp,  HTPk and mTPk, whereas vTPk were
assumed to be gamma  distributed. Scientific input to form prior dis-
tributions of the variable parameters was elicited through expert
opinion. The expert, and co-author in this paper (SSN), has more
than 15 years of experience working on epidemiology and MAP
infection control in Denmark, and was  requested to provide an esti-
mate on the mode and upper 95% limits of HTP2011 and mTP2011.
Using this information, beta distribution parameters were calcu-
lated using the function “beta.select” present in the “LearnBayes”
library of R.3.1.1 (R Core Team, 2014). For vTP2011, gamma distri-
butions were fitted using the methodology proposed by Hanson
et al. (2003), where the median of mTP2011 prior belief distribu-
tion was calculated. Then, the expert was  requested to provide
the median and upper 95% limit of the 90th percentile of the
distribution of within-herd prevalence conditional on the elicited
mTP2011. Then, the variability associated with these prior beliefs
about the median and upper 95% limit of the 90th percentile of the
beta (mTP2011 × vTP2011, (1  − mTP2011) × vTP2011) distribution was
estimated, considering that mTP2011 is known. Finally, the variabil-
ity estimates were used to fit a Gamma distribution representing
vTP2011. Mathematical computation was  carried using an R-code
developed by Nielsen et al. (2011). Model prior distributions are
presented in Table 1.

The incorporation of model priors followed an iterative
approach. First, the model was run for the year 2011, and HTP2011,
mTP2011 and vTP2011 posterior distributions were used to form the
corresponding prior distributions for the following year. Then, the
model was  run for the year 2012, with HTP2012, mTP2012 and vTP2012
posterior distributions being used to form prior distributions for the
year 2013. Finally, the model was run for the three years simulta-
neously in order to compute POPR. The corresponding beta and
gamma  distributions were fitted from the stated posterior dis-
tributions using the package “fitdistrplus 1.0-1”, function “fitdist”
(Delignette-Muller et al., 2010) for R.3.1.1 (R Core Team, 2014).

Visual inspection of the Gelman–Rubin–Brooks plot for two par-
allel chains with different starting values was  used to assess model
convergence. Models were fitted using the WinBUGS software
(Spiegelhalter et al., 1996). The posterior median and associated
95% posterior probability interval (PPI) were obtained after run-
ning the model for 25,000 iterations (the first 5000 MC  samples
were discarded as a burn-in period).

Expert-defined prior distributions were considered critical
assumptions of the model. A sensitivity analysis was  therefore per-
formed by varying the values of HTP2011 and mTP2011 (as informed
by the expert) by +/−10%. Differences were assessed by the compu-
tation of POPR following the same methodology described above.

3. Results

A total of 665,700 samples were included in the study, from
221,194 cows in 2011, 224,040 cows in 2012, and 220,466 cows in
2013. For those years, samples were collected from 1138, 1112 and
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