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a  b  s  t  r  a  c  t

Sampling  strategies  to  substantiate  freedom  from  disease  are  important  when  it  comes
to the trade  of  animals  and  animal  products.  When  considering  imperfect  tests  and  finite
populations,  sample  size  calculation  can,  however,  be  a challenging  task.  The  generalized
hypergeometric  formula  developed  by  Cameron  and  Baldock  (1998a)  offers  a  framework
that can  elegantly  be  extended  to  multi-stage  sampling  strategies,  which  are  widely  used
to account  for  disease  clustering  at herd-level.  The  achieved  alpha-error  of  such  surveys,
however,  typically  depends  on  the  realization  of the  sample  and  can  differ  from  the  pre-
calculated  value.  In  this  paper,  we introduce  a  new  formula  to evaluate  the exact  alpha-error
induced by  a specific  sample.  We  further  give  a numerically  viable  approximation  formula
and  analyze  its  properties  using  a  data  example  of Brucella  melitensis  in the Austrian  sheep
population.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In order to meet the standards of trading partners or
international organizations, livestock populations are often
required to be proven free from certain diseases. Whether
or not a population is issued the status of being disease-
free depends on the outcome of epidemiological surveys.
Absolute proof requires the examination of every indi-
vidual in a population using an infallible diagnostic test.
In reality, however, virtually no diagnostic test is per-
fect and examining every individual is generally too costly
and time consuming. Hence, sample surveys are used,
which resort to a representative subset of the popula-
tion.

Sample surveys cannot provide absolute proof of the
absence of a disease. The goal of such a sample survey is
rather to provide sufficient evidence to demonstrate – to
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a level of certainty – that a disease, if present, is present
in less than a specified proportion of the population; see,
e.g., OIE Terrestrial Code (2012),  Article 1.4.6. This preva-
lence level is referred to as the design prevalence. The
reliability of the statement is quantified in terms of the
probability of detecting a present disease in the popula-
tion and is commonly referred to as the confidence level.
An equivalent, and widely used, measure of the quality
of the statement is given by the error probability (type
I error ˛), i.e., the probability of not being able to detect
a present disease. This error is mainly determined by the
survey design and the sample size. Cannon and Roe (1982)
introduced approximate formulas to compute the sample
size required to achieve a preset ˛. The results were tabu-
lated and have widely been used for the design of surveys.
The formulas are easy to apply but they are based on two
simplifying assumptions: the population under investiga-
tion is assumed to be infinite and the diagnostic test being
used is assumed to be perfect, i.e., the test has perfect sensi-
tivity and specificity. MacDiarmid (1988) later developed a
modification of the approximate formula which considers
imperfect test sensitivity. An exact formula was  introduced
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by Cameron and Baldock (1998a), using a generalization of
the hypergeometric distribution to characterize the distri-
bution of the number of test positive cases in a sample.
This formula accounts for finite populations and imperfect
tests.

In large populations where animals are separated into
herds, disease has a tendency to cluster at herd-level.
Hence, when an infection occurs, a rather high within-
herd prevalence might be observed, while the prevalence
between individual herds might be considerably lower. In
order to account for the difference in these prevalence
levels, Cameron and Baldock (1998b) recommended the
use of two-stage schemes, where, instead of sampling
individual animals from the entire population, herds are
sampled in the first stage and, subsequently, individual ani-
mals are chosen from the specified herds in the second
stage. Apart from the ability to account for disease clus-
tering, two-stage sampling further has an appeal that is
more of a logistic nature. Using a single-stage approach
to sample from a large population requires a list featur-
ing all the animals in the population (e.g., the country),
each uniquely identifiable, whereas the two-stage samp-
ling approach only requires a list of the herds in the
population featuring the herd sizes, i.e., the number of ani-
mals per herd.

The formula of Cameron and Baldock can quite elegantly
be extended to fit such two-stage sampling by regarding
each sampling stage as a separate single-stage sampling
scheme with its own design prevalence and confidence
level. The “interface” between the stages is given by the
test sensitivity of the top-level stage which corresponds to
the confidence level of the lower-level stage (i.e., the herd
sensitivity); see, e.g., Cameron and Baldock (1998b).

Typically, such sampling schemes are designed to
ensure an overall ˛-error below a predefined (desired)
threshold ˛* (usually 5% or 1%). The computation of the
first-stage sample size (i.e., the number of herds to be sam-
pled) is, however, generally based on the assumption that
the herd sensitivities are constant over all herds in the pop-
ulation. In reality, the herd sensitivity varies between the
herds. For reasons of computability, approximate values
(average or lower bound) are used for sample size calcu-
lations. Hence, the actually achieved  ̨ of the scheme can
differ from the pre-calculated value, and the error ulti-
mately depends on the realization of the sample. In the
course of this paper, we introduce a formula to compute
the exact ˛-error induced by a specific sample. We  investi-
gate properties of the exact error for the sampling schemes
individual sampling (Ziller et al., 1999) and limited sampling
(Selhorst et al., 1999); see also Ziller et al. (2002) for a com-
parison of the two sampling strategies. We  further apply
the results to a data example of Brucella melitensis in the
Austrian sheep population.

Due to combinatorial issues, the exact evaluation of
the error requires high computational effort and, hence,
the population size for which the error can be evaluated
is limited by the available computational resources. We,
therefore, give a numerically viable alternative and dis-
cuss its approximation properties, again using the data
example of Brucella melitensis in the Austrian sheep pop-
ulation.

2. Materials and methods

2.1. Preliminaries

In Sections 2.1.1 and 2.1.2, we recall some basic the-
ory and notation from Cameron and Baldock (1998a,b) and
Ziller et al. (2002).

2.1.1. One-stage sampling
With surveys to substantiate freedom from disease, a

sample is taken from a population and the population is
said to be disease-free if the number of test-positive indi-
viduals in the sample lies beneath a predefined threshold.
For sample designs assuming perfect specificity of the diag-
nostic test, this threshold is set to one, i.e., the population
is considered diseased if one or more test-positive individ-
uals are found in the sample. If, however the diagnostic test
has an imperfect specificity, even a disease-free popula-
tion may  generate (false) positive test results. In the survey
design, this can be accounted for by setting the threshold to
a higher level, i.e., by allowing a certain number of positive
test results. This, however, generally leads to larger sam-
ple sizes. For the analysis in this paper, we will therefore
henceforth assume that the diagnostic test being used has
perfect specificity and we define a disease-free population
as one where all test results are negative. Apart from its
appeal from a computational point of view, the assump-
tion of perfect test specificity is plausible, as positive test
results might have economic implications and are gener-
ally undesirable; see, e.g., OIE Terrestrial Code (2012).  It can
therefore be assumed that positive results are thoroughly
followed-up to establish a final classification that has no
false positive outcomes.

Sample sizes are subsequently computed such that the
probability of the survey not being able to detect a present
disease falls below a predefined error-level ˛*. The error-
probability generally depends on the sample size n, the
population size N, the design prevalence � and the sensi-
tivity Se of the diagnostic test. Let T+ denote the number
of test-positive individuals in the sample. According to
the design prevalence �, we  assume that the population
contains d ≈ N · � diseased individuals. The probability of
finding no test-positives in the sample, given the disease is
present in the population at level �, is then given by

 ̨ = P(T+ = 0|� > 0, N, n) =
min(d,n)∑

y=max(0,n−N+d)

(
d

y

)(
N − d

n − y

)
(

N

n

) (1 − Se)y,

(1)

where the summation index y corresponds to the possible
number of diseased individuals in the sample; see Cameron
and Baldock (1998a).

2.1.2. Two-stage sampling
Let the parameters of the first sampling stage (sampling

herds from the population of herds) be denoted by the sub-
index 1 and the parameters of the second stage (sampling
animals within selected herds) be denoted by the sub-index
2, followed by the index indicating the selected herd. When
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