ELSEVIER

Contents lists available at ScienceDirect

Veterinary Microbiology

journal homepage: www.elsevier.com/locate/vetmic

Ecology and geographic distribution of *Yersinia enterocolitica* among livestock and wildlife in China

Junrong Liang ^{a,1}, Ran Duan ^{a,1}, Shengli Xia ^{b,1}, Qiong Hao ^{c,1}, Jinchuan Yang ^{d,1}, Yuchun Xiao ^a, Haiyan Qiu ^a, Guoxiang Shi ^e, Shukun Wang ^f, Wenpeng Gu ^g, Chunxiang Wang ^h, Mingliu Wang ⁱ, Kecheng Tian ^j, Longze Luo ^k, Meng Yang ^l, Huaiyu Tian ^{m,n}, Jiazheng Wang ^a, Huaiqi Jing ^{a,*}, Xin Wang ^{a,*}

- ^a National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
- ^b Henan Provincial Centre for Disease Control and Prevention, Zhengzhou, China
- ^c Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, China
- ^d Xuzhou Municipal Centre for Disease Control and Prevention, Xuzhou, China
- ^e Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
- f Yuxi Municipal Centre for Disease Control and Prevention, Yuxi, China
- g Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
- ^h Qinghai Provincial Centre for Disease Control and Prevention, Xining, China
- ¹ Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
- ^j Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
- ^k Sichuan Provincial Centre for Disease Control and Prevention, Chengdu, China
- ¹ Jiangxi Provincial Centre for Disease Control and Prevention, Nanchang, China
- ^m College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
- ⁿ School of Environment, Tsinghua University, Beijing, China

ARTICLE INFO

Article history: Received 10 November 2014 Received in revised form 30 April 2015 Accepted 5 May 2015

Keywords: Ecology distribution of Yersinia Livestock Multi-host pathogens Pulsed-field gel electrophoresis Wildlife Zoonosis

ABSTRACT

The results in this study show the prevalence of Yersinia enterocolitica varies in different animal species and regions of China. The highest prevalence is among pigs (12.91%), followed by dogs (9.80%), Ochotona curzoniae (plateau pica) (6.76%), chickens (4.50%), rodents (3.40%), cattle (2.78%) and sheep (0.89%). Pathogenic isolates comprised the majority of the Y. enterocolitica recovered from pigs (73.50%) and dogs (59.44%); whereas the nonpathogenic Y. enterocolitica made up most of poultry and wildlife recovered strains. A correlation analysis comparing the prevalence and geographic factors showed the isolation rate of Y. enterocolitica in pigs and dogs was negatively correlated with elevation (r = -0.50, P < 0.05) and annual average air temperature (r = -0.43, P < 0.05), but there was positive correlation with annual precipitation (r = 0.43, P < 0.05); conversely, the isolation rate from wildlife is positively correlated with elevation (r = 0.3, P < 0.05) contrary to the result seen in livestock. Twelve novel biotype 2 pathogenic Y. enterocolitica carried ail and ystB virulence genes, and one biotype 1A nonpathogenic strain positive with ail, ystB and ystA genes were isolated from Microtus fuscus (Qinghai vole) on plague foci of the Qinghai-Xizang plateau. The PFGE pattern K6GN11C30021 was predominant in pigs (44.25%) and patients (41.18%); K6GN11C30068 was predominant in dogs (40.16%). Animal isolates from the same region shared the same pattern (K6GN11C30021 and K6GN11C30012), indicating they may be from the same clone and arose through cross infection. Moreover, the identical PFGE pattern among local animals and diarrhea patients suggested that the animals may be the source of infections in these areas.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

There is a significant rise in the popularity of open farms and petting zoos in China with the increased development of the social economy. People may expose to zoonotic disease, especially multi-host pathogens, through activities such as feeding and

^{*} Corresponding authors at: National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 155 Changbai Road, Changping District, Beijing 102206, China. Tel.: +86 10 58900758; fax: +86 10 5890070.

E-mail addresses: jinghuaiqi@icdc.cn (H. Jing), wangxin@icdc.cn (X. Wang).

These authors contributed equally to this study.

handling of the animals, which make it difficult to control infections in animals and humans (Jones et al., 2013; Virtanen et al., 2011). Precautions to control the spread of zoonotic disease require an understanding of the ecology and distribution of the pathogens in their hosts and vectors (Keesing et al., 2006). Yersiniosis has three well known human and animal pathogens, Yersinia pestis, Yersinia enterocolitica, and Yersinia pseudotuberculosis. Y. enterocolitica and Y. pseudotuberculosis are enteropathogens with diverse animal hosts and are more prevalent in recent years due to human transmission via the fecal/oral route and prevalence in farm animals (Galindo et al., 2011). Y. pestis causes the plague and is a mammalian vector-borne disease transmitted by fleas that serves as the vector between the rodent hosts (Achtman et al., 1999; Easterday et al., 2012).

Y. enterocolitica is a Gram-negative member of the Enterobacteriaceae family and observed on many continents (McNally et al., 2004; Wren, 2003). In Europe, human yersiniosis is the third most common enteric disease after campylobacteriosis and salmonellosis (Backhans et al., 2011; Bucher et al., 2008). Y. enterocolitica is divided into six biotypes (1A, 1B, 2, 3, 4, and 5) and 60 serotypes (Fredriksson-Ahomaa and Korkeala, 2003a). Most Y. enterocolitica types associated with human yersiniosis belong to bioserotypes 1B/O:8, 2/O:9, 3/O:3, 4/O:3 and 2/O:5,27 (Prentice et al., 1991). Two outbreaks causing more than 500 infections were reported in China in the 1980s (Wang et al., 2008). Y. enterocolitica is recovered from diverse animal sources including farm animals, domestic pets, and free-living and captive wild animals. Pigs serve as the primary reservoir having a high prevalence of pathogenic Y. enterocolitica (Bucher et al., 2008; Fosse et al., 2009; Liang et al., 2012), and dogs are also considered to be the potential source of human infections in China (Wang et al., 2010). In addition, isolates from goats, sheep, cattle, cats, wild rodents and wild boars have also been reported as carriers by other countries (Backhans et al., 2011; Bottone, 1999; Fredriksson-Ahomaa and Korkeala, 2003b; Lanada et al., 2005; Wang et al., 2009). As a zoonotic pathogen, the geographic distribution of pathogenic *Y. enterocolitica* in China significantly differed (Wang et al., 2009), and the prevalence of *Y. enterocolitica* has a close relationship with distribution and activity of local animals. Therefore, there is a need to identify different sources of *Y. enterocolitica* and to understand the prevalence and transmission of *Y. enterocolitica* in China. In this study, we examined the prevalence of *Y. enterocolitica* among livestock and wildlife living in different regions of China and performed a homology study of the strains isolated and discussed the factors that impact the distribution and transmission of *Y. enterocolitica*.

2. Materials and methods

2.1. Animal collection and field sampling

Samples from livestock (pig, dog, sheep, cattle, chicken, and duck) and wildlife (rodents, *Ochotona curzoniae* (plateau pica) and bats) were collected from 60 different counties in China in different ecology landscapes: the Qinghai-Tibet Plateau (Qinghai, Sichuan-Shiqu County, Gansu); Loess Plateau (the Ningxia Hui Autonomous Region); Inner Mongolian Plateau (the Inner Mongolia Autonomous Region); Yunnan-Guizhou Plateau (Yunnan, Guizhou); Sichuan Basin (Sichuan-Mianyang, Ziyang and Jianyang); the Northeast China Plain (Heilongjiang); North China Plain (Henan, Beijing); Yangtze Plain (Jiangxi, Anhui, Jiangsu,

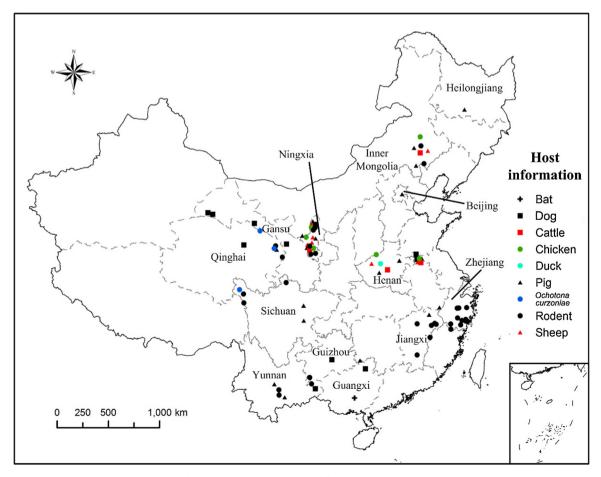


Fig. 1. Animal collection type and field sampling districts.

Download English Version:

https://daneshyari.com/en/article/5799897

Download Persian Version:

https://daneshyari.com/article/5799897

<u>Daneshyari.com</u>