ELSEVIER

Contents lists available at SciVerse ScienceDirect

Veterinary Parasitology

journal homepage: www.elsevier.com/locate/vetpar

Short communication

Evaluation of indirect TaSP enzyme-linked immunosorbent assay for diagnosis of tropical theileriosis in cattle (*Bos indicus*) and water buffaloes (*Bubalus bubalis*) in Egypt

Amr M. Mohamed a,b,*, Ahmed Abdel-Radyc, Laila S. Ahmedc, Amira El-Hosaryc

- ^a Clinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
- ^b Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, 7607, Saudi Arabia
- ^c Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt

ARTICLE INFO

Article history: Received 23 May 2011 Received in revised form 1 November 2011 Accepted 7 November 2011

Keywords: Tropical theileriosis Serological diagnosis TaSP-ELISA Molecular diagnosis Tams-1 gene Microscopic examination

ABSTRACT

The aim of the present study was to evaluate the validity of *Theileria annulata* surface protein (TaSP)-ELISA, in comparison with traditional microscopic test, for the diagnosis of *T. annulata* infection among Egyptian baladi cattle (*Bos taurus*) and water buffaloes (*Bubalus bubalis*). Molecular confirmation of infection using *T. annulata* merozoite surface (Tams-1) target amplification by PCR was used as a gold standard. A total of 76 clinically suspected animals including 64 baladi cattle and 12 water buffaloes were investigated in the current study by the three methods. Based on the PCR-confirmed results, the evaluation study revealed higher sensitivity of TaSP-ELISA (72.9% and 75%) as compared to microscopic examination (58.3% and 50%) among cattle and buffaloes, respectively. On the other hand, the specificity of TaSP-ELISA in diagnosis of *T. annulata* infection was higher (87.5%) in baladi cattle as compared to water buffaloes (37.5%). In conclusion, TaSP-ELISA was shown to be suitable for the diagnosis of *T. annulata* infection in cattle under field conditions.

© 2011 Elsevier B.V. All rights reserved.

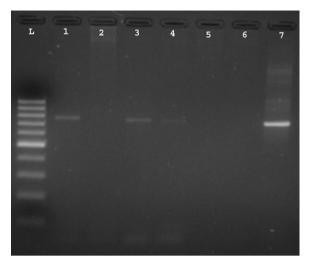
Tropical theileriosis (*Theileria annulata* infection, also known as Mediterranean fever) is among the tick-borne diseases that cause losses in the productivity as well as fatalities in bovine breeds (Dolan, 1989). In Egypt, the disease is one of the most destructive obstacles to live stock production, infecting both cattle and water buffaloes (Nagaty, 1947; Ezzat, 1960; EL-Deeb and Younis, 2009). While, Egyptian cattle act as reservoir hosts for *T. annulata*, water buffaloes (*Bubalus bubalis*) are reported as relatively more resistant to *Theileria* species infection as compared to cattle (Ezzat, 1960; Osman and Al-Gaabary, 2007). Previous

E-mail address: amrmohamed2004@yahoo.com (A.M. Mohamed).

studies on cattle have shown that long-lasting carrier status is a common finding in the field among recovered animals. These carrier animals have an important role in the transmission of the infection by *Hyaloma* ticks (D'Oliveira et al., 1995).

Acute *T. annulata* infection is traditionally diagnosed by the demonstration of schizont-infected cells in superficial lymph nodes draining the site of tick bite, also by observation of typical piroplasms in peripheral red blood cells (Anon., 1997). In recovered carrier animals, the piroplasm is the only stage that can be demonstrated, often with great difficulty (Kirvar et al., 2000).

Serological assays are best suitable for the diagnosis in later phases of the disease and in carrier animals in which the antibody titers are usually higher and the piroplasm parasitemia drops to microscopically undetectable levels (Bakheit et al., 2004). Recently, *T. annulata* surface protein (TaSP) has been characterized and its application in


^{*} Corresponding author. Current address: Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca 7607, Saudi Arabia. Tel.: +966 598936458; fax: +966 5270000x4242.

indirect ELISA has been documented and validated in cattle (Schnittger et al., 2002; Bakheit et al., 2004; Salih et al., 2007). TaSP is present as a single copy within the parasite genome and transcribed in the sporozoite and schizont stage. Sequence analysis of TaSP showed high identity with the corresponding *T. annulata* surface protein from different geographical locations (Bakheit et al., 2004).

The application of PCR for molecular diagnosis of bovine theileriosis has shown recent advances (D'Oliveira et al., 1995). Tams-1 (a 30 kDa protein) is the most abundant and immunodominant antigen on the surface of merozoites and piroplasms of *T. annulata* (Shiels et al., 2000). Tams-1 PCR assay has been documented by several studies as the most preferred method for detection of *Theileria* species in epidemiological studies. It shows superior sensitivity and specificity in diagnosing *T. annulata* infection under field conditions over both microscopic and serological methods. As compared to serological assays, PCR-based molecular assays can differentiate between true positive cases and those cases with false positive results due to cross-reaction or old infection (Martin-Sanchez et al., 1999; Aktas et al., 2002: Vantansever and Nalbantoglu. 2002).

The validity of the TaSP-ELISA, as compared to microscopic examination method, for the diagnosis of tropical theileriosis among Egyptian baladi cattle and water buffaloes under field conditions was evaluated. Tams-1 PCR assay was used for molecular confirmation of *T. annulata* among suspected investigated animals as the gold standard test. The validation parameters included sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and combined predictive value (CPV) that were calculated using previously established and described formulas (Thrusfield, 2005).

A total of 76 animals, suspected of being infected with T. annulata were selected from different localities in EL-Fayoum, EL-Minia, Assuit, Sohage and EL-Wady EL-Gaded governorates in Upper Egypt during the period of May to August 2008. Investigated animals were selected after clinical examination and included 64 baladi cattle (Bos taurus) and 12 water buffaloes (B. bubalis). The inclusion criteria included those animals with different degrees of tick infestation with or without suspected signs of acute or chronic forms of tropical theileriosis. Direct blood sample was collected from the ear vein of investigated animals for preparation of blood films. Two whole blood samples were collected from the jugular vein of each investigated animals with and without sodium EDTA anticoagulant for molecular and serological assays, respectively. In addition, lymph node aspiration was also collected from suspected animals and was used for preparation of lymph node impression smears for microscopical diagnosis, and other part was kept for molecular diagnostic assay. Collected blood, lymph and serum samples were stored at −20 °C till time of use. Thin blood films and lymph node impression smears were prepared immediately after sampling and were stained with Giemsa stain as previously described (Charles, 2002). Four thin blood films and 4 lymph node impression smears were examined for each animal for detection of suspected piroplasms and/or trophozoite stages and macroschizonts and/or microschizonts stages of Theileria species, respectively.

Fig. 1. Representative gel showing amplification of Tams-1 target from suspected *T. annulata* infection isolates. Lane L: 100 bp. DNA ladder: lanes 1, 3, 4 and 7: positive isolates yielded 785 bp. product; lanes 2 and 5: negative isolates; lane 6: negative control.

Serological diagnosis was carried out using TaSP-based indirect ELISA kit (Research Center Department, Borstel, Germany) as recommended by the manufacturer and as previously described (Bakheit et al., 2004). The samples were set in duplicate, with the mean value being used for recording and calculations. The absorbance at 450 nm was measured using an ELISA reader Stat fax® 2100 reader (Awareness, Technology Inc., Palm City, FL). Results were expressed as percent positivity (PP), which was calculated as the mean OD values of duplicate tested samples multiplied by 100 and divided by the mean OD values of the four replicates of the positive control. The cut off was set at 44 PP with specificity and sensitivity of 93.5% as recommended by manufacture using the TWO-ROC software (Salih et al., 2005).

Tams-1-based PCR assay was carried out for the molecular detection of *T. annulata* from blood samples lymph node specimens of all suspected animals using primer set Tams1F (ATGCTGCAAATGAGGAT) and Tspm1R (GGACT-GATGAGAAGACGA TGAG) to amplify a 785 base-pair fragment of the Tams-1 gene as previously described (Kirvar et al., 2000).

Current results revealed that Tams-1 PCR assay was able to detect specific DNA target of *T. annulata* (Fig. 1) and to confirm the infection in 48 (75%) and 4 (33.3%) cases out of the 64 and 12 clinically suspected baladi cattle and water buffaloes, respectively. Out of these, 28 and 35 baladi cattle, and 2 and 3 water buffaloes were diagnosed positive by microscopic examination and TaSP-ELISA, respectively. Only 15 baladi cattle and one water buffalo were found positive by both microscopic examination and TaSP-ELISA. On the other hand, out of the PCR-confirmed negative cases, 2 baladi cattle and 5 water buffaloes were found positive for *T. annulata* infection by TaSP-ELISA (Table 1).

Based on the PCR results, microscopical examination of Giemsa stained blood and lymph node impression smears was found to have high specificity (100%) for the detection of *T. annulata* infection among both baladi cattle and

Download English Version:

https://daneshyari.com/en/article/5805064

Download Persian Version:

https://daneshyari.com/article/5805064

<u>Daneshyari.com</u>