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While viral latency remains one of the biggest challenges for

successful antiviral therapy, it has also inspired mathematical

modelers to develop dynamical system approaches with the

aim of predicting the impact of drug efficacy on disease

progression and the persistence of latent viral reservoirs. In this

review we present several differential equation models and

assess their relative success in giving advice to the working

clinician and their predictive power for inferring long term viral

eradication from short term abatement. Many models predict

that there is a considerable likelihood of viral rebound due to

continuous reseeding of latent reservoirs. Most mathematical

models of HIV latency suffer from being reductionist by ignoring

the growing variety of different cell types harboring latent virus,

the considerable intercellular delay involved in reactivation, and

host-related epigenetic modifications which may alter

considerably the dynamical system of immune cell populations.
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Introduction
Viral latency is a reversible state of nonproductively

infected host cells [1]. Once integrated in the nucleus

of the cell, the virus may remain dormant; that is, for

certain time periods no new virions are produced, but

nevertheless the inactivated viral genome remains poten-

tially harmful by virtue of host cell proliferation. For the

case of proviral latency, cytokine induction can activate

the virus from its dormant state [2] such that the provirus

enters the lytic infection cycle. Besides escape mutations

during the early infection phase [3–5], viral latency

constitutes a major challenge for both efficient drug

treatment and mathematical modeling of infectious dis-

ease. In the present review we discuss mathematical

models that predict the size of viral reservoirs evolving

during the course of infection and their capability of

producing rebounds of viral load. We highlight the use

of differential equations (e.g. [6–9,10��,11]) which have

proven to most successfully model the temporal dynamics

of molecular factors involved with latent viral infection.

Such models aim to make accurate predictions about the

efficacy of treatment administration.

Given the possibilities of deep sequencing [12] and the

better understanding of epigenetic factors involved in

latency [13], we also touch on new directions of modeling

the interplay of host-related epigenetic regulation and

evolving latent reservoirs in the context of therapy design.

Basic differential equations models of HIV
latency
Being the most prominent example of proviral latency, we

discuss in detail modeling approaches for HIV latency

(see Figure 1). The main reservoirs of latent HIV are

memory CD4+ T lymphocytes which harbor integrated

proviruses that are unable to complete their lifecycle [14].

Model compartments are given by the variables T, L, T*

and V: the number of susceptible, latently infected and

effectively infected CD4+ lymphocytes and viral load in

blood serum, respectively.

On the left-hand side of Eqn 1–4 (see [10��,15] for model

parameters) there appear change rates of the variables

defined by (dT*/dt)(s) � (T*(s + D) � T*(s))/D for a short

time increment D > 0. On the right-hand side the so-

called incidence function F determines the interdepen-

dence of T cell and viral populations and their presumed

effect on the rate of change of T, T* and L (see Figure 2).

All variables are dependent upon time s, which is omitted

for notational convenience:

dT

dt
¼ a � FðT ; VÞ � dT T (1)

dL

dt
¼ hð1 � eÞFðT ; VÞ � dLL � aLL (2)

dT �

dt
¼ ð1 � hÞeFðT ; VÞ � dT �T

� � aLL (3)

dV

dt
¼ pT � � cV (4)

The model parameters are the recruitment rate of

susceptible T cells, a the rate of transition from latently

infected to productively infected cells aL, the cell death

Available online at www.sciencedirect.com

Current Opinion in Virology 2013, 3:402–407 www.sciencedirect.com

Open access under CC BY-NC-ND license.

csel@uw.edu
http://www.sciencedirect.com/science/journal/18796257/3/4
http://dx.doi.org/10.1016/j.coviro.2013.06.009
http://dx.doi.org/10.1016/j.coviro.2013.06.015
http://www.sciencedirect.com/science/journal/18796257
http://creativecommons.org/licenses/by-nc-nd/3.0/


rates dT, dL and dT� , the drug efficacy e, the fraction of

infection h leading to proviral latency, the viral clearance

rate c, and the virus production rate p. As an example we

discuss Eqn 2:

The incremental change of the latent viral reservoir dL/dT
is given by the product of viremia and susceptible T cells,

which means that assuming constant viremia, the latent

reservoir changes in linear dependence according to the

number of susceptible T cells. h being usually 10�3 [16],

only a few susceptible cells become latently infected, the

majority 1 � h being effectively infected. Drug efficacy e
is set around 0.85, but since provirus is neither affected by

protease inhibition nor by antiretroviral drugs, it is the

inefficacy rate 1 � e that affects the change rate of the

latent reservoir. Antigen presentation may reactivate

latent provirus such that aL = 0.1 latently infected cells

leave the reservoir. Memory CD4+ T cells also undergo

apoptosis with constant rate dL = 10�3.

F(T,V) = 1: Linear equations assume that the change rate

of plasma viremia and CD4+ T cells within a small

amount of time is proportional to their starting concen-

tration. In [17] it is shown that such a model can explain a

rebound of viral load despite a long period of declining

virus production. Because the pool of dormant virus has

considerable genomic variety [18], it is necessary to

introduce a continuous range of activation rates for the

provirus depending on the particular strain. Accessory

cells (such as macrophages) which are specific for rare

antigens have thus lower probability of being activated

and the mathematical model predicts a decelerating

decay of latently infected cells upon highly active anti-

retroviral therapy (HAART).
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Basic cell compartments involved with HIV infection: susceptible T cells (T), effectively infected T cells (T*), latently infected T cells (L) and viremia due

to lytic viral replication (V).

Figure 2
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The incidence function F(T,V) quantifies to which extent the size of

susceptible T cell populations and viremia lead to reactivation.
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