Functional sites involved in modulation of the GABA_A receptor channel by the intravenous anesthetics propofol, etomidate and pentobarbital

Maria C. Maldifassi, Roland Baur, Erwin Sigel*
Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland

A R T I C L E I N F O

Article history:
Received 26 August 2015
Received in revised form 15 December 2015
Accepted 3 January 2016
Available online 6 January 2016

Keywords:
GABA_A receptors
Chloride channels
Electrophysiology
Xenopus oocyte
Anesthetics
Barbiturates

A B S T R A C T

GABA_A receptors are the major inhibitory neurotransmitter receptors in the brain and are the target for many clinically important drugs. Among the many modulatory compounds are also the intravenous anesthetics propofol and etomidate, and barbiturates. The mechanism of receptor modulation by these compounds is of major relevance. The site of action of these compounds has been located to subunit interfaces in the intra-membrane region of the receptor. In α₁β₂γ₂ GABA_A receptors there are five such interfaces, two β+/α− and one each of α+/β−, α+/γ− and γ+/β− subunit interfaces. We have used reporter mutations located in the second trans-membrane region in different subunits to probe the effects of changes at these subunit interfaces on modulation by propofol, etomidate and pentobarbital. We provide evidence for the fact that each of these compounds either modulates through a different set of subunit interfaces or through the same set of subunit interfaces to a different degree. As a GABA_A receptor pentamer harbors two β+/α− subunit interfaces, we used concatenated receptors to dissect the contribution of individual interfaces and show that only one of these interfaces is important for receptor modulation by etomidate.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

GABA_A receptors are the major inhibitory neurotransmitter receptors in the mammalian central nervous system. Numerous subunits have been cloned (for review see: Barnard et al., 1998; Macdonald and Olsen, 1994; Olsen and Sieghart, 2008; Rabow et al., 1995; Sigel and Steinmann, 2012), indicating that numerous receptor isoforms exist (Olsen and Sieghart, 2008). The subunits show homology to subunits of other Cys-loop receptors (Betz, 1990; Miller and Smart, 2010). Many GABA_A receptors are heteromeric protein complexes consisting of five subunits, which are arranged around a central Cl[−]-selective channel (Macdonald and Olsen, 1994). The major receptor isoform of the GABA_A receptor in the brain consists of α₁, β₂ and γ₂ subunits (Barnard et al., 1998; Macdonald and Olsen, 1994; Olsen and Sieghart, 2008; Rabow et al., 1995; Sigel and Steinmann, 2012). Different approaches have indicated a 2α:2β:1γ subunit stoichiometry for this receptor (Baumann et al., 2001; Chang et al., 1996; Farrar et al., 1999; Tretter et al., 1997) with a subunit arrangement γββββ anti-clockwise as seen from the synaptic cleft (Baumann et al., 2001, 2002; Baur et al., 2006). The pharmacological properties of a receptor depend on subunit composition (Sigel et al., 1990) as well as their arrangement (Minier and Sigel, 2004). GABA_A receptors do not exclusively locate to synapses. Some receptor subtypes, among them the ones containing the δ subunit, have been found in extra-synaptic regions where they mediate tonic inhibition (Farrant and Nusser, 2005).

The GABA_A receptor is the target of many clinically used and experimental drugs (for review see Sieghart, 1995; Sieghart and Ernst, 2005; Middendorp et al., 2014), including benzodiazepines, barbiturates, volatile anesthetics, and the intravenous anesthetics propofol and etomidate. There is good evidence that the intravenous anesthetics act near the extracellular end of the membrane-spanning domain (M) of various subunits. Amino acid residues located in the non-channel lining face of the βM2, and in αM1, βM1, βM3 and γM3 have been proposed to form part of the binding site(s) (Bali and Akabas, 2004; Chiara et al., 2013; Jayakar et al., 2014; Richardson et al., 2007; Yip et al., 2013).

Co-crystallization of homomorphic Caenorhabditis elegans GluCl receptors with the allosteric modulator ivermectin revealed that the latter binds at each of the five interfaces in the transmembrane...
domain of the receptor. S260 (M2-15’) located within M2 forms a hydrogen bond with ivermectin (Hibbs and Gouaux, 2011). The homologous position in β subunits (β3N265) of GABA_A receptors is also important for modulation by anesthetics (Belletti et al, 1997; Jurd et al., 2003; Stewart et al., 2014). A docking analysis performed with etomidate in the GABA_A receptor placed this compound in a binding pocket homologous to the ivermectin-pocket in the GluCl receptor (Chiara et al., 2012). In x1β2γ2 GABA_A receptors there exist in principle 5 different interfaces that harbor the corresponding pocket.

β3N265 (βM2-15’) was first identified as a determinant of the modulatory action of loreclezole (Wingrove et al., 1994). Later work has shown that this residue, located in the β+/α− interface is crucial for modulation by etomidate and propofol. Many point mutations of this residue abolished or reduced sensitivity to etomidate, among them β3N265M, β3N265S, β3N265C, β3N265M (Belletti et al., 1997; Fernandez et al., 2012; Siegwart et al., 2002; Stewart et al., 2014; Wingrove et al., 1994). In β3N265M mutant mice its anesthetic action is impaired (Jurd et al., 2003). However, direct photo-labelling of this residue has never been observed. Moreover, propofol and etomidate failed to protect β3N265C from covalent modification from sulphhydryl-reactive reagents (Bali and Akabas, 2004; Li et al., 2009; Stewart et al., 2014). Thus, it is not clear if the β3N265 residue has a direct role in binding, or in allosteric effects (Stewart et al., 2014). Modulation by the barbiturate pentobarbital is not affected by the β3N265C mutation (McCracken et al., 2010), although in a β3N265M knock-in mouse model some of the anesthetic responses towards this agent were reduced (Zeller et al., 2007). The influence of this residue in barbiturate action remains uncertain (McCracken et al., 2010).

In an attempt to further characterize the site of action of these compounds, photo-affinity labeling has been used. Photo-reactive etomidate analogs identified two equivalent anesthetic binding sites in the trans-membrane domain in the two β+/α− interfaces, which also contain the GABA_A binding sites in the extracellular domain. A second class of anesthetic binding site has been labeled using a photo-reactive derivative of barbiturates, at the α+/β− and γ+/β− subunit interfaces. In x1β2γ2 and x1β3 receptor types, propofol produced a concentration-dependent inhibition of photo-labelling by etomidate and barbiturate analogs >90%. Propofol bound with similar affinities to β+/α− sites and α+/β−/γ−/β− sites, with an IC50 of ~40 μM in x1β2γ2 receptors. Since this concentration is nearly 10-fold higher than the concentrations of propofol necessary to potentiate the receptor, the authors suggested that propofol may not only bind to the aforementioned sites, but additionally to other unidentified sites (Chiara et al., 2013). Barbiturates failed to inhibit with high affinity etomidate binding, and etomidate does not inhibit the labeling by the barbiturate derivative (Chiara et al., 2013; Jayakar et al., 2014). Thus, the authors propose that occupation of any of these sites is enough for anesthetic action. Given the structural diversity of intravenous anesthetics it is also unlikely that all anesthetics bind to a common class of pockets (Chiara et al., 2012).

Use of photo-affinity labeling is a direct method for the identification of amino acid residues located in or close to drug binding sites through an irreversible covalent reaction, although the lack of labeling does not provide evidence that a certain amino acid residue is not involved in drug interaction (Yip et al., 2013). Successful photo-affinity labeling alone also can not provide information on whether the corresponding site mediates weak or strong positive allosteric properties or antagonist properties. In any case functional data using low concentrations of the compounds are required.

Here we performed a detailed study of the functional consequences of the β3N2651 point mutation, and homologous mutations in other subunits (α1S2691, γ2S2801). All these mutations are located at subunit interfaces. Earlier work has shown that combined mutation of the three residues eliminated the low affinity potentiation by diazepam in mutated x1β2γ2 Receptors (Walters et al., 2000). Our results indicate multiple sites of action all located at subunit interfaces for low concentrations of etomidate, propofol and pentobarbital. These sites mediate channel potentiation to a different degree. Using subunit concatenation, we demonstrate that the two β+/α− subunit interfaces differentially affect modulation by etomidate.

2. Methods

2.1. Construction of mutated receptor subunits

The point mutations x1S2691I, β2N265M and γ2S280I were prepared using the QuickChange™ mutagenesis kit (Stratagene, Agilent Technologies, Basel, Switzerland).

2.2. Construction of concatenated subunits

Construction of tandem and triple subunit cDNAs. The tandem construct γ2β2, and triple construct x1β2γ1 has been described previously (Boulieu et al., 2002). Site-directed mutagenesis of β2N265 to I was done in the tandem construct and the triple construct using the QuickChange™ mutagenesis kit (Stratagene, Agilent Technologies, Basel, Switzerland).

2.3. Expression of GABA_A receptors in Xenopus oocytes

Capped cRNAs were synthesized (Ambion, Austin, TX, USA) from the linearized plasmids with a cytomegalovirus promoter (pCMV vectors) containing the different subunits, respectively. A poly-A tail of about 400 residues was added to each transcript using yeast poly-A polymerase (United States Biologicals, Cleveland, OH, USA). The concentration of the cRNA was quantified on a formaldehyde gel using Radiant Red stain (Bio-Rad) for visualization of the mRNA. Known concentrations of RNA ladder (Invitrogen) were loaded as standard on the same gel. cRNAs were precipitated in ethanol/isooamyl alcohol 19:1, the dried pellet dissolved in water and stored at −80 °C. cRNA mixtures were prepared from these stock solutions and stored at −80 °C.

Xenopus laevis oocytes were prepared, injected and defolliculated as described previously (Sigel, 1987; Sigel and Minier, 2005; Animal research permit by the Kantonstierarzt, Kantonaler Veterinärdepartement Bern (BE98/12)). They were injected with 50 nL of the cRNA solution containing wild type or mutated rat x1, β2, and γ2 subunits of the GABA_A receptors at a concentration of 10 nM:10 nM:50 nM (Boulieu et al., 2002). For concatenated tandem and triple constructs, cRNA combinations ratios of 25:25 nM were used. Injected oocytes were incubated in modified Barth’s solution at 18 °C for at least 24 h before the measurements.

2.4. Functional characterization of the GABA_A receptors

Currents were measured using a modified two-electrode voltage clamp amplifier Oocyte clamp OC-725 (Warner Instruments) in combination with a XY-recorder (90% response time 0.1 s) or digitized at 100 Hz using a PowerLab 2/20 (AD Instruments GmbH, Spechbach, Germany). Tests with a model oocyte were performed to ensure linearity in the larger current range. The response was linear up to 15 μA. The holding potential was −80 mV. The perfusion medium contained 90 mM NaCl, 1 mM KCl, 1 mM MgCl2, 1 mM CaCl2, and 5 mM Na-HEPES (pH 7.4). Concentration response curves for GABA were fitted with the equation I(c) = I_{max}/