

Contents lists available at SciVerse ScienceDirect

Neuropharmacology

journal homepage: www.elsevier.com/locate/neuropharm

CrossMark

Invited review

Long-term potentiation: Peeling the onion

Roger A. Nicoll a,b,*, Katherine W. Roche c

- ^a Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143-2140, USA
- ^b Department of Physiology, University of California, San Francisco, CA 94143, USA
- ^c Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA

ARTICLE INFO

Article history: Received 12 February 2013 Accepted 12 February 2013

Keywords: NMDA receptor AMPA receptor CaMKII Long-term potentiation Synapse

ABSTRACT

Since the discovery of long-term potentiation (LTP), thousands of papers have been published on this phenomenon. With this massive amount of information, it is often difficult, especially for someone not directly involved in the field, not to be overwhelmed. The goal of this review is to peel away as many layers as possible, and probe the core properties of LTP. We would argue that the many dozens of proteins that have been implicated in the phenomenon are not essential, but rather modulate, often in indirect ways, the threshold and/or magnitude of LTP. What is required is NMDA receptor activation followed by CaMKII activation. The consequence of CaMKII activation is the rapid recruitment of AMPA receptors to the synapse. This recruitment is independent of AMPA receptor subunit type, but absolutely requires an adequate pool of surface receptors. An important unresolved issue is how exactly CaMKII activation leads to modifications in the PSD to allow rapid enrichment.

This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most remarkable features of the brain is its ability to store vast amounts of information. Changes in the strength of synaptic connections as a mechanism underlying learning and memory had been proposed by Cajal at the beginning of the last century and then formulated into a concrete synaptic model by Hebb in 1949. However, it was not until the discovery of long-term potentiation (LTP) (Bliss and Lomo, 1973; Lomo, 1966), in which brief high frequency synaptic stimulation in the hippocampus results in a long lasting increase in synaptic strength, that there was experimental evidence supporting such a proposal. LTP has remained to this day the most compelling cellular model for learning and memory. Indeed, there are no competing models in the field. In this review we discuss the minimal requirements for LTP and our current knowledge of the underlying molecular mechanisms.

2. Early days

The discovery of LTP in the dentate gyrus in vivo was soon followed by two additional major developments. First, was the

E-mail address: roger.nicoll@ucsf.edu (R.A. Nicoll).

demonstration that LTP could be induced in the hippocampal slice preparation (Schwartzkroin and Wester, 1975) and second, was the discovery that the NMDA subtype of glutamate receptor was required for hippocampal LTP (Collingridge et al., 1983). It is now well accepted that NMDAR-dependent LTP is widespread in the CNS.

3. Multiple forms of LTP

One of the problems in the LTP field is semantics. The field has never explicitly settled on a precise definition for this phenomenon. Perhaps the broadest definition would be a long-term (>30 min) enhancement in synaptic transmission following brief high frequency synaptic stimulation, although, as discussed below, this is not strictly a requirement for NMDAR-dependent LTP. If we accept this broad definition, then it is clear that multiple forms have been described at different synapses. The clearest example is hippocampal mossy fiber LTP, a form of LTP that is universally agreed to be independent of NMDAR activation and to have an expression mechanism distinct from NMDAR-dependent LTP (Nicoll and Malenka, 1995; Nicoll and Schmitz, 2005).

The issue of multiple forms of LTP at excitatory synapses in the CA1 region is considerably more complex. It has been proposed that the properties of LTP depend on both the frequency and pattern of stimulation (e.g., 100 versus 200 Hz, theta burst stimulation etc) and on the stimulus strength. In addition it has been proposed that the properties of LTP change over time. For instance, a widely held

 $^{^{*}}$ Corresponding author. Department of Cellular and Molecular Pharmacology, University of California, Genentech Hall, 600 16th Street, Box 2140, San Francisco, CA 94143–2140, USA. Tel.: +1 415 476 2018.

model suggests that at some point after the induction of LTP (>1 h), protein synthesis is required to maintain the potentiation (Johnstone and Raymond, 2011; Reymann and Frey, 2007; Schuman et al., 2006). However it should be noted that, although rarely cited, there have been a number of well controlled studies that have failed to find any dependence of LTP on protein synthesis up to 8 h after the induction (e.g., Abbas et al., 2009; Villers et al., 2012). To add to the apparent complexity, the list of proteins proposed to be involved in LTP continues to grow (well over a hundred) leading some investigators to despair as to whether LTP is a tractable phenomenon (Sanes and Lichtman, 1999).

What strategies are available to deal with the complexities and confusion in this field? First, the vast majority of studies on LTP have been carried out in the CA1 region where LTP is particularly robust. Given the possibility that differences might exist at different synapses in the brain, it would seem prudent to focus one's attention on the CA1 excitatory synapse where a large body of data already exists. Furthermore, it is generally agreed that it is the unique properties of the NMDAR that make LTP such a compelling model of learning and memory. Thus, while other forms of LTP may exist at CA1 excitatory synapses, it is NMDAR-dependent LTP that is of the greatest interest.

4. Approaches to studying NMDAR-dependent LTP

Part of the confusion in the study of LTP is the failure to appreciate that there are two separate questions regarding the induction of LTP. The first question is what controls the activation of the NMDAR and the second question is what happens after activation of the NMDAR? It is well established that there are only two requirements for the induction of LTP: glutamate binding to the NMDAR and membrane depolarization. Most studies have used various forms of tetanic stimulation, to cause the depolarization of the postsynaptic membrane. However, the effectiveness of the tetanus in depolarizing the neuron is influenced by a large number of variables. For instance, altering the level of GABAergic inhibition will have a profound effect on the degree to which a tetanus will depolarize the postsynaptic neuron and therefore NMDAR activation. In fact any manipulation that affects the level of depolarization (e.g., postsynaptic excitability, number of synapses activated, presynaptic transmitter release, etc.) and therefore the degree of NMDAR activation will affect LTP, but this has nothing to do with understanding the central mechanisms underlying LTP. This confusion may well explain the long list of proteins postulated to mediate LTP (Sanes and Lichtman, 1999). To determine the requirements for LTP, the important question is what happens after NMDAR activation. Thus in order to study LTP in a controlled fashion, one must be able to precisely control the depolarization. This is accomplished by a "pairing" protocol. Specifically one uses cesium to block potassium channels in the postsynaptic neuron so the neuron can be held at a given membrane potential (e.g., ~0 mV) during synaptic stimulation.

5. The locus of change during NMDAR-dependent LTP

Although the primary mechanism mediating the induction of LTP, the activation of NMDARs, was elucidated rapidly and with unanimity, the mechanisms underlying the subsequent expression of LTP remained contentious for many years. In particular, it could not be agreed upon as to whether the enhanced synaptic transmission after LTP induction was due to a presynaptic increase in transmitter release or alternatively to a postsynaptic increase in the AMPAR response. There was considerable circumstantial evidence for a postsynaptic expression mechanism (Nicoll, 2003; Nicoll and Malenka, 1999), but the observation that during LTP the synaptic

failure rate decreases (Bekkers and Stevens, 1990; Malinow and Tsien, 1990) strongly and abruptly swayed opinion to the presynaptic side. Based on classical quantal analysis such a change indicates an increase in the probability of transmitter release (Del Castillo and Katz, 1954). An equally abrupt change of opinion back to the postsynaptic side came with the discovery that some CA1 synapses are postsynaptically silent (i.e., synapses containing only functional NMDARs). During LTP these synapses rapidly acquire AMPAR responses so that the failure rate decreases. Thus this finding provides a postsynaptic explanation for the change in failure rate (Isaac et al., 1995; Liao et al., 1995). As a consequence a postsynaptic expression mechanism for LTP is now generally accepted and led into the era of studying the precise mechanisms that regulate AMPAR trafficking to synapses.

As is often the case in science, technical advances helped bring a final resolution to this debate. With the introduction of two-photon microscopy, one can image single spines, which receive excitatory synapses, and uncage glutamate onto single spines. Coupled with electrophysiology one can now perform a "pairing" experiment where the activation of NMDARs by uncaging glutamate onto a single spine can be coupled with postsynaptic depolarization. With this reduced system one can show a rapid enhancement of the AMPAR-mediated uncaging response that lasts for the duration of the experiment and is dependent on NMDAR activation (Harvey and Svoboda, 2007; Lee et al., 2009; Matsuzaki et al., 2004). At this level of resolution one can show that the LTP is, indeed, synapse specific, since close neighboring synapses are not potentiated. These experiments provide unequivocal evidence that LTP is accompanied by a postsynaptic enhancement of the AMPAR response. The experiments do not exclude a presynaptic component, but given that the magnitude of the enhancement is similar to that seen when LTP is induced with synaptic activation, there is no need to include a presynaptic component in the model. Another important advance resulting from these experiments is the observation of a rapid increase in spine volume that persists for the duration of the experiment (Harvey and Svoboda, 2007; Lee et al., 2009; Matsuzaki et al., 2004). This is now considered a robust and reproducible morphological correlate of synaptic plasticity.

6. How does NMDAR activation trigger LTP?

It is generally agreed that the influx of calcium through the NMDAR is required for LTP. There is also a consensus that CaMKII is the downstream target of calcium and that CaMKII is both necessary (Giese et al., 1998) and sufficient (Lledo et al., 1995; Pettit et al., 1994) for LTP. Based on biochemical studies it has long been proposed that CaMKII could be responsible for maintaining the longterm increase in synaptic strength. During calcium/calmodulin activation of CaMKII, the molecule undergoes autophosphorylation resulting in a constitutively active, calcium-independent enzyme (Lisman et al., 2012). The abundance of CaMKII in neurons and specifically at the PSD, as well as its unique molecular properties, made it an extremely attractive candidate for a "memory molecule". Although very attractive, recent two-photon fluorescence lifetime imaging of single spines during the induction of LTP does not support this model. It was found that CaMKII activation during pairing is transient, returning to baseline in about 1 min (Lee et al., 2009). Therefore, whatever process maintains LTP it must be downstream of CaMKII. The critical downstream target(s) of CaMKII remain elusive, although many substrates of CaMKII have been identified including phosphorylation of the AMPAR itself (Barria et al., 1997; Mammen et al., 1997; Roche et al., 1996). Recent evidence suggests that CaMKII may trigger the local persistent activation of Rho GTPases, specifically RhoA and Cdc42, which are critical for both structural and functional plasticity (Murakoshi

Download English Version:

https://daneshyari.com/en/article/5814821

Download Persian Version:

https://daneshyari.com/article/5814821

<u>Daneshyari.com</u>