Author's Accepted Manuscript

Propyl gallate sensitizes human lung cancer cells to cisplatin-induced apoptosis by targeting heme oxygenase-1 for TRC8-mediated degradation

Eun Ji Jo, Seong Ji Park, Byung-Chul Kim

PII: S0014-2999(16)30422-8

DOI: http://dx.doi.org/10.1016/j.ejphar.2016.06.052

Reference: EJP70723

To appear in: European Journal of Pharmacology

Received date: 19 April 2016 Revised date: 28 June 2016 Accepted date: 29 June 2016

Cite this article as: Eun Ji Jo, Seong Ji Park and Byung-Chul Kim, Propyl gallat sensitizes human lung cancer cells to cisplatin-induced apoptosis by targeting heme oxygenase-1 for TRC8-mediated degradation, European Journal c Pharmacology, http://dx.doi.org/10.1016/j.ejphar.2016.06.052

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Propyl gallate sensitizes human lung cancer cells to cisplatin-induced apoptosis by targeting heme oxygenase-1 for TRC8-mediated degradation

Eun Ji Jo, Seong Ji Park and Byung-Chul Kim*

Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea

*Correspondence to. Department of Biochemistry. College of Natural Sciences. Kangwon National University. Kangwondaehakgil 1. Chuncheon-si, Gangwon-do 24341. Republic of Korea. Tel.: +82 33 250 8517. fax.: +82 33 259 5664. bckim@kangwon.ac.kr

Abstract

Heme oxygenase-1 (HO-1) significantly contributes to survival of cancer cells and is being considered as one of therapeutic targets for cancer treatment. Propyl gallate (PG) is a synthetic phenolic compound that possess a potent anti-oxidant and anti-inflammatory activities. In the present study, we investigated whether PG exhibit an anti-cancer effect through modulating HO-1 activation. In human non-small cell lung cancer (NSCLC) cells, treatment with PG dose-dependently diminished HO-1 protein levels without changing its mRNA levels and consequently decreased HO-1 activity. PG also significantly enhanced the sensitivity of NSCLC cells to cisplatin-induced apoptosis, and this effect was attenuated by overexpression of HO-1. Mechanistically, PG exerted its chemosensitization effect by down-regulating HO-1 protein expression through a TRC8 (translocation in renal carcinoma, chromosome 8)-mediated ubiquitin-proteasome pathway. Collectively, our data provide the potential application of PG in combination chemotherapy to enhance drug sensitivity in lung cancer by targeting HO-1.

Key words: propyl gallate; drug sensitivity; lung cancer; HO-1 degradation; TRC8 E3 ligase

1. Introduction

Heme oxygenase-1 (HO-1) is a rate-limiting enzyme that catalyzes oxidative breakdown of free heme (Kikuchi et al., 2005). HO-1 also confers cytoprotective functions to oxidative damage through potent antioxidant and anti-inflammatory actions of its metabolic byproducts, biliverdin and carbon monoxide (Lin et al., 2007; Lee et al., 2011). Therefore, HO-1 deficiency in normal cells may cause the incidence of genome instability and tumorigenesis.

HO-1 is an inducible protein and its expression is transcriptionally regulated by a nuclear factorerythroid 2-related factor 2 (Nrf2) (Kobayashi and Yamamoto, 2005). Under oxidative stimuli, Nrf2 is

Download English Version:

https://daneshyari.com/en/article/5826628

Download Persian Version:

https://daneshyari.com/article/5826628

Daneshyari.com