Author's Accepted Manuscript

Pinocembrin inhibits lipopolysaccharide-induced inflammatory mediators production in BV2 microglial cells through suppression of PI3K/Akt/NF-κB pathway

Lu-ting Zhou, Ke-jia Wang, Ling Li, Hui Li, Ming Geng

PII: S0014-2999(15)30064-9

DOI: http://dx.doi.org/10.1016/j.ejphar.2015.06.003

Reference: EJP70032

To appear in: European Journal of Pharmacology

Received date: 15 March 2015 Revised date: 21 May 2015 Accepted date: 1 June 2015

Cite this article as: Lu-ting Zhou, Ke-jia Wang, Ling Li, Hui Li and Ming Geng, Pinocembrin inhibits lipopolysaccharide-induced inflammatory mediators production in BV2 microglial cells through suppression of PI3K/Akt/NF-κB p a t h w a y , *European Journal of Pharmacology*, http://dx.doi.org/10.1016/j.ejphar.2015.06.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Pinocembrin inhibits lipopolysaccharide-induced inflammatory mediators production in BV2 microglial cells through suppression of PI3K/Akt/NF-κB pathway

Lu-ting Zhou^{1,2}, Ke-jia Wang², Ling Li², Hui Li², Ming Geng¹

- 1. Department of Pathology, General Hospital of Jinan Military Command, Jinan, 250031, Shandong Province, China.
- 2. Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China. Correspondence to: Ming Geng, MM, Department of Pathology, General Hospital of Jinan Military Command, Jinan, 250031, Shandong Province, China. E-mail: gengming112@163.com

Abstract

Pinocembrin, one of the primary flavonoids from Pinus heartwood and Eucalyptus, has been reported to have anti-inflammatory and antioxidant activity. This study was designed to evaluate the inhibitory effects of pinocembrin on inflammatory mediators production in LPS-stimulated BV2 microglial cells. The results showed that pinocembrin dose-dependently inhibited LPS-induced inflammatory mediators TNF-α, IL-1β, NO and PGE₂ production. Pinocembrin also inhibited LPS-induced iNOS and COX-2 expression. Moreover, pinocembrin inhibited LPS-induced PI3K, Akt phosphorylation, and NF-κB activation, which were required for inflammatory mediators production. Furthermore, treatment of pinocembrin induced nuclear translocation of Nrf2 and expression of HO-1. In conclusion, our data indicated that pinocembrin inhibited LPS-induced inflammatory mediators production by suppressing PI3K/Akt/NF-κB signaling pathway.

Keywords: Pinocembrin; LPS; NF-κB; PI3K; microglia

1. Introduction

Microglia, the main immune defense cells in the brain, has been reported to play critical roles in immune surveillance under normal conditions (Kim et al., 2000). Microglia activation has been reported to play an important role in the pathogenesis of several neurodegenerative disorders (Liu and Hong, 2003a). In neuroinflammatory pathology, LPS stimulated microglia could induce NF- κ B activation and inflammatory mediators such as TNF- α , PGE₂ and NO production (Jin et al., 2006). Excessive production of these inflammatory mediators could cause neuronal damage and death (Bazan et al., 1995). Accumulated evidences suggested that inhibition of microglial activation and inflammatory mediators production had the ability to attenuate the severity of neurodegenerative diseases (Dheen et al., 2007; Rock and Peterson, 2006). Therefore, we tried to find compounds from natural products that had the ability to inhibit inflammatory mediators production.

Pinocembrin (Fig. 1A), one of the primary flavonoids from Pinus heartwood and Eucalyptus, has been reported to have a variety of pharmacological activities such as anti-inflammatory and antioxidant activities (Saad et al., 2015). Previous studies showed that pinocembrin inhibited LPS-induced TNF- α , IL-1 β and IL-6 production in RAW264.7 cells in vitro (Soromou et al., 2012). Pinocembrin also attenuated 6-OHDA-induced neuronal cell death in SH-SY5Y cells (Jin et al., 2014). In vivo, pinocembrin was found to inhibit LPS-induced acute lung injury in mice and inhibit LPS-induced endotoxic shock in mice (Soromou et al., 2014). However, the effect of

Download English Version:

https://daneshyari.com/en/article/5827029

Download Persian Version:

https://daneshyari.com/article/5827029

<u>Daneshyari.com</u>