

Contents lists available at ScienceDirect

Fitoterapia

journal homepage: www.elsevier.com/locate/fitote

Five new indole alkaloids from the leaves of Rauvolfia yunnanensis

Chang-An Geng, Xi-Kui Liu*

State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China

ARTICLE INFO

Article history: Received 28 January 2013 Accepted in revised form 13 May 2013 Available online 23 May 2013

Keywords: Rauvolfia yunnanensis Indole alkaloids Rauvoloids A–E

ABSTRACT

Five new indole alkaloids, rauvoloids A–E (1-5), together with two known ones, raucaffrinoline (6) and perakine (7) were isolated from the leaves of *Rauvolfia yunnanensis*. Their structures were elucidated by extensive spectroscopic methods. Structurally, rauvoloids A (1), B–C (2-3) and D (4) with unusual substitution patterns (no substitution, Cl and (1E)-3-oxo-butenyl, respectively) at C-20, are the first examples of perakine-type alkaloids with C_{18} and C_{22} skeletons.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Rauvolfia yunnanensis belonging to the Rauvolfia genus of the family Apocynaceae has long been used for treating hypertension, snake bites and insanity in the Zhuang and Yao minority regions of China. The Rauvolfia genus contains about 135 species mainly distributed in America, Africa, Asia and Oceania, of which 9 species, 4 variants and 3 cultivars are present in China [1,2]. R. yunnanensis are rich in indole alkaloids, especially reserpine and yohimbine, however, wild resources are reduced rapidly and their use for pharmaceutical purposes are unsatisfactory [3-7]. In 2003, we introduced R. yunnanensis from Xichou County into the arid-hot valley region of Nujiang River, Yunnan Province (China) for large scale field cultivation. After transplantation, the contents of total alkaloids, as well as reserpine and yohimbine in the roots of R. yunnanensis were obviously increased compared to the indigenous plants [8]. In order to investigate the constitutional variation, our previous study on R. yunnanensis resulted in one new macrocyclic diamide and three new indole alkaloids [9–11]. As a continuous investigation, this further study on the leaves of R. yunnanensis yielded five new perakine-type

indole alkaloids, rauvoloids A–E (**1–5**), together with two known ones, raucaffrinoline (**6**) and perakine (**7**). From a biogenetic point of view, perakine-type indole alkaloids with a C_{19} skeleton were derived from raucaffriline (ajmaline-type) by intramolecular rearrangement reaction, and thus, possessed an additional C_1 substitute at C-20 which was derived from the Me-18 in raucaffriline [12–14]. Interestingly, rauvoloids A (**1**), B–C (**2–3**) and D (**4**), with no substituent, Cl and (1*E*)-3-oxo-butenyl group at C-20, respectively, were obviously different from perakine (with a formyl group at C-20). To our knowledge, rauvoloids A–C and rauvoloid D are the first examples of perakine-type alkaloids with C_{18} and C_{22} skeletons, respectively. This paper mainly deals with the isolation and structural elucidation of rauvoloids A–E (**1–5**) by extensive spectroscopic analyses.

2. Experimental

2.1. General experimental procedures

IR (KBr) spectra were measured on a Bio-Rad FTS-135 spectrometer (Bio-Rad, Hercules, California, USA). UV spectra were determined on a Shimadzu UV-2401A spectrophotometer (Shimadzu, Kyoto, Japan). Optical rotations were recorded on a Jasco model 1020 polarimeter (Horiba, Tokyo, Japan). 1D and 2D NMR spectra were performed on a Bruker AM-400 NMR and DRX-500 spectrometers with TMS as the internal standard

^{*} Corresponding author. Tel./fax: +86 871 65215967. E-mail address: liuxikui@mail.kib.ac.cn (X.-K. Liu).

(Bruker, Bremerhaven, Germany). MS spectra were determined on a VG Auto Spec-3000 spectrometer (VG, Manchester, UK). Melting points (uncorrected) were measured on an X4 apparatus (Guiguang, Beijing, China). Silica gel (Makall, Qingdao, China), Sephadex LH-20 gel (Pharmacia, Uppsala, Sweden) and Rp-18 gel (Merck, Darmstadt, Germany) were used for column chromatography.

2.2. Plant material

Rauvolfia yunnanensis Tsiang was collected in Nujiang, Yunnan Province, China, in December 2005, which was cultivated in 2003. A voucher specimen (KIB 2005-12-01) was deposited in the State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, CAS.

2.3. Extraction and isolation

The air-dried leaves of *R. yunnanensis* (8.0 kg) were powdered and extracted with 95% EtOH at room temperature 3 times (each time 12 h, 20.0 L \times 3 times). All the extracts were combined and concentrated under vacuum to give a residue (372.5 g). The residue was suspended in 5.0% HCl-H₂O, and after filtration, the acid solution was basified with 10% ammonia–water to pH 10.0. Then, the basic solution was extracted with CHCl₃ (2.0 L \times 3 times) to give a total alkaloidal part (57.5 g). This part was performed on an Al₂O₃ column eluted with CHCl₃/MeOH (from 100:0 to 0:100) to obtain seven fractions (A–G). Fraction C (15.0 g) was further chromatographed on a silica gel column, eluted with

CHCl₃/MeOH (from 90:10 to 80:20) to provide three fractions (C1–C3). Fraction C1 (1.0 g) was loaded on the silica gel column, eluted with petroleum ether (PE)/acetone (80:20), and further purified with the Sephadex LH-20 gel column (CHCl₃/MeOH, 1:1) to yield compounds 1 (4.6 mg) and 4 (3.2 mg). Separation of fraction C2 (1.2 g) by silica gel column, eluted with PE/ acetone gradient (from 80:20 to 60:40), afforded two sub-fractions (C2-1 and C2-2), Sub-fraction C2-1 (100.0 mg) was purified with the Sephadex LH-20 gel column (CHCl₃/ MeOH, 1:1) to give compound 2 (8.1 mg). Sub-fraction C2-2 (50.0 mg) was chromatographed on a silica gel column with an elution of CHCl₃/acetone (80:20) to obtain compound **3** (5.0 mg). Fraction C3 (8.6 g) was loaded on a silica gel column eluted with CHCl₃/acetone gradient (from 90:10 to 50:50) to afford three sub-fractions (C3-1-C3-3). Sub-fraction C3-1 (200.0 mg) was further purified with the Rp-18 gel column eluted with MeOH/H2O (20:80) to yield compound 5 (25.0 mg). Sub-fraction C3-2 (1.0 g) was loaded on an Al₂O₃ column eluted with CHCl₃/MeOH (90:10), then purified with the Sephadex LH-20 gel column (MeOH) to give compound 6 (230.5 mg). Sub-fraction C3-3 (3.5 g) was loaded on an Al₂O₃ column eluted with CHCl₃/MeOH (85:15), and further purified with the Rp-18 column with an elution of MeOH/ H_2O (30:70) to yield compound **7** (2.0 g).

Rauvoloid A (1): mp 185–186 °C; $[\alpha]$ 29 D = +7.5 (c 0.20, CHCl₃); IR (KBr) $\nu_{\rm max}$: 2943, 2929, 1737, 1616, 1586, 1469, 1454, 1374, 1354, 1230, 1212, 1029, 1020, 952, 774, 750 cm⁻¹; UV (CHCl₃) $\lambda_{\rm max}$ ($\log \varepsilon$): 253 (3.52), 205 (3.31) nm; 1 H and 13 C NMR data: see Tables 1 and 2; EIMS m/z 332 (100, M⁺), 279 (45), 263 (32), 235 (43), 196 (83), 168 (51); HRFABMS (+) m/z 323.1768 [M + H]⁺ ($C_{20}H_{23}N_2O_2$, calcd 323.1760).

Table 1 ¹H NMR data of compounds **1–5** (CDCl₃, δ in ppm, J in Hz).

No.	1	2	3	4	5
3	4.17, d, 9.2	4.25, d, 9.4	4.10,d, 8.8	4.11, d, 9.3	4.13, d, 9.4
5	3.61, m	3.62, m	3.80, d, 6.0	3.63, m	3.62, m
6α	1.62, d, 11.8	1.61, m	1.59, m	1.59, d,11.8	1.59, d, 11.8
6 β	2.79, dd, 11.8, 5.0	2.78, dd, 12.0, 5.0	2.82, dd, 11.9, 5.0	2.79, m	2.78, m
9	7.46, d, 7.7	7.47, d, 7.6	7.47, d,7.4	7.42, d, 7.8	7.43, d, 7.5
10	7.21, dt, 7.7, 1.2	7.23, t, 7.6	7.23, td, 7.6, 1.2	7.18, dt, 7.8, 1.2	7.19, t, 7.5
11	7.38, dt, 7.7, 1.2	7.41, t, 7.6	7.40, td, 7.6, 1.2	7.35, dt, 7.8, 1.2	7.36, t, 7.5
12	7.61, d, 7.7	7.63, d, 7.6	7.62, d, 7.6	7.53, d, 7.8	7.59, d, 7.5
14α	1.81, m	2.29, m	1.86, m	1.95, m	1.95, m
14β	1.66, m	1.60, m	1.90, m	1.53, m	1.50, m
15	2.40, m	2.62, m	2.80, m	2.38, m	2.44, m
16	2.32, m	2.48, m	2.72, m	2.35, m	2.31, m
17	4.93, s	4.96, s	4.99, s	4.88, s	4.99, s
18	1.24, d, 6.8	1.34, d, 6.8	1.35, d, 6.9	1.18, d, 6.4	1.33, d, 6.5
19	3.03, m	2.94, m	3.34, m	2.74, m	2.73, m
20α	1.86, m	=	4.43, dd, 7.3, 4.6	=	_
20 β	1.12, t, 10.0	3.71, d, 7.8	_	2.03, m	1.52, m
21	_	_	_	6.84, dd, 15.9, 7.8	4.53, d, 7.6
22	_	_	_	6.13, d, 15.9	_
23	-	_	_	_	_
24	-	_	_	2.24, s	_
– OAc	2.16, s	2.17, s	2.18, s	2.12, s	2.15, s
−OEt × 2	-	-	-	-	1'a: 3.78, m 1'b: 3.48, m 1"a: 3.60, m 1"b: 3.56, m 2'/2": 6H, 1.23, m

Download English Version:

https://daneshyari.com/en/article/5831173

Download Persian Version:

https://daneshyari.com/article/5831173

<u>Daneshyari.com</u>