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ARTICLE INFO ABSTRACT

Articlg history: Rat aorta assay provides a low cost and rapid platform, especially for preclinical in vivo models. The signaling
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Available online 28 December 2015 of the both in vivo and in vitro models. These explain the importance and usage of rat aorta in researches.

Furthermore, about 4503 articles have been published with the key word “rat aorta” in title or abstract from 1955
until the end of 2013 in Medline. In this review, these articles were organized into two main categories: in vivo

sz}slgﬁ;crlsﬁssue and in vitro studies. The in vitro section focused on the rat aorta model, as a tool for evaluate the mechanism of
In vitro vasodilation, vasoconstriction and angiogenesis. In the in vivo section, the most important usage of this tissue
In vivo was evaluated. Also, the vasotonic signaling pathways in the vessel are explained briefly and some rat aorta ap-
Rat aorta plications in vitro and in vivo have been discussed.
Pharmacological tool © 2015 Elsevier Inc. All rights reserved.
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1. Introduction lumen of the aortic rings, with one fixed in the bath chamber while

The vascular system has always been a major field of interest to
medical researchers [1,2]. Availability of appropriate non-cadaveric
specimens, may however be quite difficult [3].

According to available literature, using rat aorta, as a substitute for
human vascular tissue, and also as a competent model that bridges
the gap between in vivo and in vitro model studies [4], dates back to
the early 1960s [5-7]. Respiration of blood vessels [8], and experimental
models of hypertension [9], atherosclerosis [10], metabolic pathways
[11,12] and aortic aneurysms [ 13], are some examples of major research
fields done in the era of introducing rat aortic model.

The adaptation of different species and vessel types [14-16], as well
as its advantage over similar models that employ cultured tissues and
cells [17], further enhanced the status and rank of using rat aortic
model among researchers. It should however be noted that recent im-
provements in this field did not reduce the importance of this model,
but also increased its reputation as a suitable model among researchers
in diverse fields of vascular system-associated conditions. Scrutinizing
the process of angiogenesis [18] and its contributions [19,20] using
state-of-the-art 3-D models of rat aorta [21], searching for cutting-
edge vascular imaging techniques [22], investigating new drug delivery
systems [23], evaluating vascular prostheses [24], and looking closely
into vascular aging [25-28] and atherosclerosis [29,30], are some in-
stances of modern use of rat aortic model. Among these research fields,
vasoconstriction [31-39] and vasorelaxation [40-60] have come under
particular focus by scientists. This study aims to discuss the role of rat
aortic model in investigating vasoconstriction and relaxation, with em-
phasis on and their underlying mechanisms.

2. In vitro studies
2.1. Dissection and preparation of rat aorta

To obtain the thoracic aorta, adult rats (Table 1) are sacrificed and
dissected to harvest the aorta after an appropriate anesthesia. The ob-
tained tissue is cleaned from surrounding excess fat and connective tis-
sue, and cut into rings which are placed in organ bath solutions usually
maintained at 37 °C with a pH of 7.4 for isometric force recording. Two
identical platinum or stainless steel hooks are introduced through the

the other is attached to a force transducer connected to an analyzing
and recording machine.

The rings are equilibrated at a fixed resting tension for a definite pe-
riod. In the interim, the bathing solution is refreshed at particular inter-
vals (Table 1) [61-68]. To reach an optimal tension, the contraction is
induced by using KCl solution (45 mM). Maximal contraction is evoked
at the optimal tension [69].

If an endothelium-denuded ring is required, its internal surface is
gently rubbed [70] with a cotton stick moistened with physiological
salt solution [61,71], 18 gauge needle [72], metal or stainless steel rod
[67,73], or a pair of watchmaker's forceps [65,69,74-76]. The rings are
then immersed in organ baths containing buffer solutions with various
ingredients in different experiments (Table 2).

2.2. Determination of viability, maximum tissue contractility and integrity
of the endothelium

A contractive response to KCI confirms the viability of the tissue.
Maximum tissue contractility is assessed in the same way. To establish
the integrity of the endothelium, the relaxation response to muscarinic
agonist such as acetylcholine in pre-contracted rings with phenyleph-
rine is tested. Rings with functional endothelium show significant relax-
ation [61-63,69,74,77-82] (Table 3).

2.3. Prepared tissue usage

Prepared rat aortic rings have been used to evaluate the effect of var-
ious natural or synthetic compounds and drugs on vascular tension
namely diazoxide [83], aminophylline [84], caffeine [85], halothane
and isoflurane [71,86], chloroethylclonidine [81], Iso-S-petasin [87],
synthetic calciseptine and FS2 (a snake venom peptide homologous)
[88], Jermok [89], Dihydropyridineethylester [90], simvastatin [82], an-
tidepressants [91], coenzyme Q10 [92], sodium nitroprusside [93],
dimethyloxalylglycine [94], isosteviol [40], betaine [27], cocaine [95], in-
hibitors of SIRT1 (nicotinamide, sirtinol, EX527) [26], zinc [29], angio-
tensin II [96], flavonoids [47,97-99], estrogens [100-111] other
miscellaneous herbal ingredients [75,80,105,112-121], and malaria par-
asite [122].
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