Progress in Neuro-Psychopharmacology & Biological Psychiatry 45 (2013) 287-293

Contents lists available at SciVerse ScienceDirect

Progress in Neuro-Psychopharmacology & Biological
Psychiatry

journal homepage: www.elsevier.com/locate/pnp

Neuro-Psychopharmacology

5 Biological Psychiatry

Physiologic complexity and aging: Implications for physical function

and rehabilitation

Brad Manor *™“*, Lewis A. Lipsitz >4

2 Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA

" Harvard Medical School, Boston, MA, USA

¢ Center for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan

4 Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, USA

ARTICLE INFO ABSTRACT

Article history:

Received 15 February 2012

Received in revised form 8 August 2012
Accepted 19 August 2012

Available online 15 September 2012

Keywords:
Cardiovascular
Complexity
Multiscale entropy
Nonlinear

Postural control

The dynamics of most healthy physiological processes are complex, in that they are comprised of fluctuations with
information-rich structure correlated over multiple temporospatial scales. Lipsitz and Goldberger (1992) first pro-
posed that the aging process may be characterized by a progressive loss of physiologic complexity. We contend
that this loss of complexity results in functional decline of the organism by diminishing the range of available,
adaptive responses to the innumerable stressors of everyday life. From this relationship, it follows that rehabilita-
tive interventions may be optimized by targeting the complex dynamics of human physiology, and by quantifying
their effects using tools derived from complex systems theory. Here, we first discuss several caveats that one must
consider when examining the functional and rehabilitative implications of physiologic complexity. We then review
available evidence regarding the relationship between physiologic complexity and system functionality, as well as
the potential for interventions to restore the complex dynamics that characterize healthy physiological function.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A hallmark of healthy physiologic function is the capacity to detect,
respond and adapt to the innumerable perturbations and stressors of
daily life. This capacity is achieved via complex interactions between
multiple control systems, feedback loops, and regulatory processes that
operate over multiple scales of time and space (Lipsitz and Goldberger,
1992), and interact with one another in nonlinear fashion (Goldberger
etal,, 2002a). As a result of this rich organization, the seemingly irregular
dynamics of most physiological outputs are “complex;” i.e., they contain
“meaningful structural richness (Grassberger, 1991)” marked by a degree
of non-random fluctuations over multiple temporospatial scales (Costa
et al., 2002; Goldberger et al.,, 2002a). In recent years, the study of physi-
ologic complexity, using the theory and quantitative tools derived from
complex systems biology, has shown great promise for improving our
understanding of aging, monitoring senescence, and evaluating novel
interventions that treat age-related disease and promote healthy aging.

The conventional view of aging is that it is a linear process of phys-
ical and cognitive decline that occurs over time as one progresses
from adulthood into senescence. Lipsitz and Goldberger (1992) first
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proposed that the aging process can be defined by a progressive loss
of complexity within the dynamics of physiologic outputs. Although
important exceptions have been reported and are described else-
where (Duarte and Sternad, 2008; Hartman et al., 1994; Vaillancourt
and Newell, 2002; Vaillancourt and Newell, 2003), numerous studies
have since demonstrated that biological aging and numerous age-
related diseases and syndromes are characterized by a loss of physiologic
complexity in the dynamics of the cardiovascular (Beckers et al., 2006;
Costa et al,, 2008; Iyengar et al., 1996; Kaplan et al., 1991; Pikkujamsa
et al, 1999), respiratory (Peng et al, 2002), central nervous (Yang
et al., 2012) and motor control (Costa et al., 2007; Manor et al., 2010;
Thurner et al., 2002) systems, among others. Importantly, this loss of in-
formation content is often independent of age- and/or disease-related
changes in signal variability (Manor et al., 2010). Fig. 1, as an example,
illustrates the dynamics of anterioposterior (i.e., fore-aft) postural sway
recorded as four individuals stood with their eyes open on a stationary
force platform. Compared to the healthy young adult, the fluctuations
in postural sway were less complex in each older adult and in particular
those suffering from peripheral or central nervous system impairment.
An age-related loss of physiologic complexity is believed to stem
from gradual deterioration of underlying structural components of phys-
iological systems, as well as alterations within the nonlinear coupling
between these systems (Lipsitz, 2002, 2004). We therefore contend
that 1) relatively low physiologic complexity in the dynamics of a system
under basal conditions (i.e., resting or free-running) underlies the dimin-
ished capacity of that system to respond and adapt to stressors, and
2) preventative and/or rehabilitative interventions may be optimized
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Fig. 1. Representative anterioposterior postural sway time-series during standing with
eyes open. Age- and disease-related changes to the neuromuscular system are often
associated with unique alterations to the dynamics of postural sway. Presented here
are unfiltered postural sway (i.e., center-of-pressure) dynamics of four individuals
differing in age and/or disease status. Multiscale entropy analysis (of high-pass filtered
data) was used to derive the complexity index (C;), for which higher values reflect a
greater degree of irregularity across multiple scales of time (i.e., greater complexity).
The C; was highest in the healthy young adult and lowest in the older adult with
chronic brain damage due to a history of a hemispheric middle cerebral artery infarc-
tion (i.e., stroke). It is also of note that C; was independent of the traditional measure of
maximum sway range.

by targeting the physiologic complexity that often characterizes healthy
system function.

In this paper we aim to provide empirical evidence regarding the re-
lationship between measured physiologic complexity and system func-
tionality, as specifically defined by the capacity to adapt to physiologic
stresses or perturbations. We then examine the potential for and func-
tional implications of interventions designed to restore the loss of phys-
iologic complexity with advancing age. First, however, we discuss several
important caveats regarding measurement and task constraints that one
must consider when interpreting this research.

2. Physiologic complexity: measurement issues and task constraints

When examining the relationship between the complexity of a
system's dynamics and the functionality of that system, one must consid-
er 1) the metric(s) used to quantify complexity, 2) the sampling frequen-
cy and window of observation, 3) the impact of task constraints, and 4)
the type of stimulus, stressor or perturbation being examined.

First, there are numerous metrics available that each quantify differ-
ent aspects of the complex, nonlinear properties of physiologic time-
series, including entropy (Pincus, 1991) and multiscale entropy analyses
(MSE) (Costa et al., 2002), detrended fluctuation analysis (Peng et al.,
1995), fractal dimension (Higuchi, 1988) and recurrence plot analysis
(Webber and Zbilut, 1994), among others. It is of note that traditional

entropy-based metrics estimate the degree of regularity or orderliness
of a time-series on a single scale of time. As discussed in depth by Costa
et al. (2002), these metrics do not capture the structural characteristics
of a signal over multiple scales of time, and thus, may fail to characterize
physiologic complexity. To overcome this issue, new metrics have been
developed such as MSE, which utilizes a technique called “coarse-
graining” to enable estimation of a signal's regularity over multiple
time scales (Fig. 2). Still, Goldberger et al. (2002b) has argued that no
single statistical measure can fully capture the complexity of a physiolog-
ical system. Insensitivity of a particular metric to the effects of group,
experimental condition or intervention does not necessarily imply that
other metrics will also lack meaningful relationships to the functionality
or rehabilitative potential of the system in question.

Second, estimation of a signal's complexity is dependent upon both
the sampling frequency and window of observation. The contribution
of high-frequency fluctuations may be omitted if the sampling frequency
is not sufficiently high, whereas the contribution of low-frequency
fluctuations may be overlooked if the measurement window is not suffi-
ciently long. An example of the latter can be seen in the regulation of
heart rate. Endogenous circadian rhythms influence heart rate on time
scales of approximately 24 h. When measured over days or weeks,
these low-frequency fluctuations contribute to the physiologic com-
plexity of heart rate dynamics (Hu et al,, 2008). On the other hand, if
heart rate is observed over an observation window of several hours, cir-
cadian influences will cause a “drift” or “nonstationarity” in heart rate;
i.e,, the statistical distribution of the signal will change over time. Such
nonstationarities—whether stemming from important physiological
processes, measurement error or noise—significantly affect complexity
metrics and should be detrended (Peng et al., 2009). In addition to
clouding inter-study comparisons, therefore, these issues must be con-
sidered when drawing conclusions regarding the functional implications
of complexity as estimated from finite physiological time-series.

Third, the constraints within which a system operates may influence
the functional implications of physiologic complexity. For example, in
several studies examining the dynamics of force output of the finger
(Sosnoff and Newell, 2008; Vaillancourt and Newell, 2002, 2003), subjects
were asked to match either constant or time-varying target forces with
their index finger by pressing on a load cell, and were provided with
real-time continuous visual feedback from a computer screen. Younger
adults performed each task with less error than older adults. Yet, com-
pared to older adults, the force dynamics produced by younger adults
were also more complex in the constant force condition, and less complex
in the time-varying force condition, as quantified by approximate entropy
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Fig. 2. Schematicillustration of the coarse-graining procedure utilized in multiscale entro-
py analysis (adapted from Costa et al., 2002). Consecutive time-series are constructed
from the original time-series (scale 1) by averaging successively increasing number of
data points in non-overlapping windows. Here, coarse-grained time-series capturing
time scale two and three are shown. Entropy of each coarse-grained series is then calcu-
lated to estimate the degree of irregularity over multiple scales of time. See Fig. 3 for an
example of multiscale entropy analysis of physiological data.
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