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Robust global models capable of discriminating positive and non-positive carcinogens; and predicting carci-
nogenic potency of chemicals in rodents were developed. The dataset of 834 structurally diverse chemicals
extracted from Carcinogenic Potency Database (CPDB) was used which contained 466 positive and 368
non-positive carcinogens. Twelve non-quantum mechanical molecular descriptors were derived. Structural
diversity of the chemicals and nonlinearity in the data were evaluated using Tanimoto similarity index and
Brock–Dechert–Scheinkman statistics. Probabilistic neural network (PNN) and generalized regression neural
network (GRNN) models were constructed for classification and function optimization problems using the
carcinogenicity end point in rat. Validation of the models was performed using the internal and external pro-
cedures employing a wide series of statistical checks. PNN constructed using five descriptors rendered clas-
sification accuracy of 92.09% in complete rat data. The PNN model rendered classification accuracies of
91.77%, 80.70% and 92.08% in mouse, hamster and pesticide data, respectively. The GRNN constructed with
nine descriptors yielded correlation coefficient of 0.896 between the measured and predicted carcinogenic
potency with mean squared error (MSE) of 0.44 in complete rat data. The rat carcinogenicity model
(GRNN) applied to the mouse and hamster data yielded correlation coefficient and MSE of 0.758, 0.71 and
0.760, 0.46, respectively. The results suggest for wide applicability of the inter-species models in predicting
carcinogenic potency of chemicals. Both the PNN and GRNN (inter-species) models constructed here can
be useful tools in predicting the carcinogenicity of new chemicals for regulatory purposes.

© 2013 Elsevier Inc. All rights reserved.

Introduction

A large number of need-based synthetic chemicals are added ev-
eryday to the existing list. Several of these chemicals have been iden-
tified as potentially toxic to the humans. The regulatory agencies
emphasize for the safety assessment of the existing as well as the
new chemicals prior to their manufacture and use. Carcinogenicity
andmutagenecity are among the major issues to be addressed in safe-
ty assessment of the chemicals. Chemicals that induce tumors, in-
crease tumor incidence, or shorten the time to tumor occurrence
are termed as carcinogens (Fjodorova et al., 2010a). Depending on
the mechanism of carcinogenesis, the chemicals may be categorized
as genotoxic or non-genotoxic. In general, the human epidemiological
studies, long-term bioassays in experimental animals, transgenic as-
says, toxicokinetics and cancer mechanism studies, including the in
vitro methods are considered the data sources for identification of
the carcinogens (Bernauer et al., 2005). In the absence of human

carcinogenicity data, long-term animal bioassays for carcinogenicity
are regularly used to determine whether chemical agents are capable
of inducing cancer in humans (NRC, 1983). A carcinogenic dose–
response assessment of a chemical yields two widely used measures
of carcinogenic potency, which is the dose at which chemicals cause
carcinogenicity in a test animal; (a) tumor dose (TD50) and (b) oral
slope factor (OSF) (Venkatapathy et al., 2009). TD50 is defined as
that chronic dose-rate in mg of chemical per kg body weight per day
(mg/kg-bw/d), which would induce tumors in half the test animals at
the end of its standard life span with respect to the control animals
(Peto et al., 1984). Moreover, for regulatory purposes, it has been ac-
cepted that without human data, the animal bioassays are acceptable
as definite evidence of carcinogenicity and substances that induce tu-
mors in animals are considered as suspected human carcinogens until
convincing evidence to the contrary is presented (IARC, 2006). At
present, our knowledge on carcinogenicity relies on the data generated
from rodent's carcinogenicity assays. Accordingly, several on-line data-
base are available on rodent carcinogenicity which prominently
include, the US National Toxicology Program (NTP) database (http://
ntp-apps.niehs.nih.gov/ntp_tox/index.cfm), the Carcinogenic Potency
Database (CPDB) (http://potency.berkeley.edu/cpdb.html), Istituto
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Superiore di Sanita, Chemical Carcinogens: “Structures and Experimental
Data” (ISSCAN) (http://www.epa.gov/ncct/dsstox/sdf_isscan_external.
html), and Pesticides Action Network (PAN) database (http://www.
pesticideinfo.org).

However, the experimental approach for the carcinogenicity test-
ing of the chemicals is very expensive; time consuming and unethical,
emphasizing for the need of the computational modeling methods ca-
pable of predicting the carcinogenicity of the chemicals using their
structural properties. Several quantitative structure–activity relation-
ship (QSAR) models, describing mathematical relationship between
the structural features and carcinogenicity of various categories of
chemicals have been proposed. The chemical class-based QSAR
models (Benigni et al., 2000; Franke et al., 2001; Gini et al., 1999a;
Helguera Morales et al., 2006; Richard and Woo, 1990; Villemin
et al., 1994; Zhang et al., 1992) although have strong mechanistic
ground leading to better interpretation of predictions, they suffer
with a limited applicability domain. Models for non-congeneric
chemicals based on heterogeneous databases are reported (Contrera
et al., 2003; Loew et al., 1985; Vracko, 1997) along with several expert
systems (Klopman et al., 2004; Lagunin et al., 2005; Matthews and
Contrera, 1998; Woo and Lai, 2005). However, none of these ap-
proaches resulted in highly satisfactory accuracies with structurally
diverse compounds. All of these approaches consider different types
of molecular descriptors as estimators. Selection and computation
of relevant descriptors to extract information from compound struc-
tures are the major limitations of this research field. Moreover,
modeling approaches based on linear relationship have limitations
as the structural properties used as estimators may have complex
non-linear dependence. The artificial intelligence (AI) approach based
models, in general are capable to capture the complex nonlinear
relationships between the relevant descriptors (or properties) and ob-
served responses (Singh and Gupta, 2012). Among these, ANNs have
emerged as unbiased tools of prediction of response using a set of inde-
pendent estimators, and subsequently these methods have been ap-
plied in toxicity prediction of the organic chemicals (Panaye et al.,
2006;Wang et al., 2010). Probability density function (PDF) based neu-
ral networks such as probabilistic neural networks (PNNs), and general-
ized regression neural networks (GRNNs) have successfully been used
in various classification and regression modeling (Adeli and Panakkat,
2009; Panaye et al., 2006; Singh et al., 2012a, 2013). Thesemethods pro-
vide high throughput and rapid adaptation and do not require any iter-
ative training and thus can learn quite quickly. Moreover, they produce
reproducible outputs and without any risk for local minimum of error
surface (Walzack and Massart, 2000). Moreover, selection of the nu-
merical descriptors of the compounds is one of the most critical steps
in AI modeling approaches. Since, no single descriptor can capture all
properties of a compound and it is not known in advance as which of
the descriptors are relevant to a particular problem, it is highly desirable
to select the ones which catch maximum possible chemical and struc-
tural properties (Consonni et al., 2002).

In this study, we constructed the probability based neural network
models (PNN, GRNN) for classification and regression to predict the
carcinogenic potency of diverse non-congeneric chemicals (www.epa.
gov/ncct/dsstox/sdf_epafhm.html; http://www.pesticideinfo.org) with
special attention being paid to the calculation and selection of molecu-
lar descriptors. Classification of the chemicalswas performed to identify
the positive and non-positive carcinogens; and regression was
performed to predict the carcinogenicity of the chemicals (− log TD50)
using a set of selected descriptors. The predictive and generalization
abilities of the models constructed here (PNN, GRNN) were evaluated
using several statistical criteria. The predictive models constructed for
rat's carcinogenicity were also applied to the mouse and hamster carci-
nogenicity data (CPDB) and to the pesticide data (PAN).

The proposed probability function based neural network models
can be used for identifying the carcinogen/non-carcinogen com-
pounds and their prioritization for carcinogenic potency.

Materials and methods

Data set

For developing predictive models for carcinogenicity potency of
non-congeneric chemicals, we considered the Lois Gold CPDB
(Carcinogenic potency database) (http://potency.berkeley.edu/)
reporting the rodent's carcinogenicity studies (http://www.epa.gov/
ncct/dsstox/sdf_cpdbas.html). The CPDB is a single standardized re-
source of information on many chronic long term bioassays. It con-
tains a large diversity of chemical structures (1547 substances), and
reports tumor data in rodents. Here we have considered the data
reporting carcinogenic potency of chemicals in rodents (rats, mouse,
and hamster). For these chemicals, the carcinogenic potency is
expressed as tomourgenic dose (TD50). The TD50 value for a given tar-
get site(s) in the absence of tumors in control animals was taken to be
the chronic dose (in mg/kg-bw/day) which induced tumors in half of
the test animals at the end of a standard life span for the species (Gold
et al., 1999). Rat driven data have been considered more suitable
for human carcinogenicity prediction. In this study, a total of 834
chemicals (out of 1241 chemicals) for rat carcinogenicity, 292
chemicals for mouse carcinogenicity (positive carcinogens), and 57
chemicals for hamster carcinogenicity were selected, excluding the
remaining ones due to non-availability of their complete set of prop-
erties. The list of selected chemicals used for carcinogenic potency
modeling along with original rat, mouse and hamster-derived rodent
carcinogenic potency expressed as discrete end point is provided in
Supporting Information (Table 1SI, 2SI). Among the selected 834
chemicals, 466 were positive carcinogens and the remaining 368
were non-positive in rat, whereas, in mouse all 292 positive carcino-
gens were considered. In the case of hamster, among the total 57
chemicals, 38 were positive and 19 were non-positive carcinogens.
For classification (positive, non-positive), all the 834 chemicals for
rat, 632 chemicals for mouse, and 57 chemicals for hamster were
taken, whereas, for regression modeling set of 457 chemicals for rat,
292 for mouse, and 38 for hamster were selected.

Molecular descriptors and feature selection

Molecular descriptors map the structure of the compound into a set
of numerical or binary values representing variousmolecular properties
that are deemed to be important for explaining activity. A set of 50
different molecular descriptors (physico-chemical, constitutional, geo-
metrical, and topological) of each of the 834 chemicals considered
here was selected initially. These molecular descriptors were calculated
using chemspider (www.chemspider). The physico-chemical proper-
ties were computed bymolecular structures, whereas, the constitution-
al, geometrical and topological descriptors were calculated by 2D
structures of the molecules, which were taken in the form of SMILES
(simplifiedmolecular input line entry system). Since, all the descriptors
may not be relevant to the classification and regressionmodeling, elim-
ination of less significant descriptors can improve the accuracy of pre-
diction, and facilitate the interpretation of the model through focusing
on the most relevant variables. Here, the initial feature selection for
classification and regression modeling was performed using the PNN
and GRNN approaches trained by a Gaussian kernel function. For opti-
mal values of the kernel function parameter σ, the PNN and GRNN
models were trained by using the complete set of features computing
the respective scoring functions to rank the contribution of features in
the current set. The lowest ranked features were then removed (Xue
et al., 2006). The PNN and GRNN systems were retained by using the
remaining set of features, and the corresponding misclassification rate
(MR) in classification and mean squared error (MSE) of prediction
were computed by means of 10-fold cross validation. Finally selected
descriptors could be gathered in four categories: physico-chemical
(octanol–water partition coefficient, Log P; density, melting point, half
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