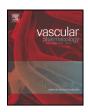
ARTICLE IN PRESS

VPH-06197; No of Pages 9


Vascular Pharmacology xxx (2015) xxx-xxx

Contents lists available at ScienceDirect

Vascular Pharmacology

journal homepage: www.elsevier.com/locate/vph

Optogenetic intervention to the vascular endothelium

- Shuang Zhang, Ningren Cui, Yang Wu, Weiwei Zhong, Christopher M. Johnson, Chun Jiang *
- Q3 Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, USA

ARTICLE INFO

Article history:

- 6 Received 28 February 2015
- Received in revised form 8 May 2015
- 8 Accepted 16 May 2015
- 9 Available online xxxx

10 Keywords:

- 11 Endothelium
- 12 Optogenetics
- 13 Endothelial cells
- 14 Channelrhodopsin
- 15 Transgenic mice
- 16 cdh5 promoter

33 **34** 36

38

39

40

41

42

43 44

45

46

47 48

49

50 51

52

53 54

55

56

57

ABSTRACT

Endothelium lining the interior of cardiovascular system and most visceral organs plays an important role in vascular function. Its dysfunction occurs in some of the most challenging diseases. An important function of the endothelium is to release vasoactive substances that act on the smooth muscle to change vascular tones. Substance secretion 19 from endocrine cells relies on membrane potentials and firing activity, while it is unclear whether the membrane 20 potential regulates substance release from the ECs. Understanding of this requires selective intervention to mem- 21 brane potentials of the endothelial cells in situ. Here we show a novel intervention to endothelial cells using the 22 optogenetic approach. A strain of transgenic mice was developed with the Cre-loxP recombination system. These 23 transgenic mice expressed channelrhodopsin (ChR) in endothelial cells driven by the vascular endothelial cadherin 24 or cdh5 promoter. Linked in a tandem with YFP, the ChR expression was detected by YFP fluorescence in various 25 endothelium-lining tissues and organs. The YFP fluorescence was observed in the lumen of blood vessels and peri- 26cardium, but not in tissues beneath the endothelium lining. Optostimulation of dissociated endothelial cells evoked 27 inward currents and depolarization. In the isolated and perfused heart, surprisingly, optostimulation of endothelial 28 cells produced fast, robust, reproducible and long-lasting vasoconstriction that was not blocked by either ET-1A or 29 TXA2 receptor antagonist. Similar optical vasoconstriction was found in the isolated and perfused kidney. These 30 results indicate that the optogenetics is an effective intervention to vascular endothelium where optostimulation 31 produces vasoconstriction.

© 2015 Published by Elsevier Inc.

1. Introduction

Endothelium, a single layer of cell lining in the cardiovascular system, lymph vessels and several internal organs, plays a critical role in vascular function including substance exchange, vascular tone regulation, angiogenesis and thrombosis [18]. Endothelial dysfunction contributes to several cardiovascular diseases such as hypertension, shock, stroke and diabetic vascular complications [7].

The endothelium is a major tissue with approximately 10¹³ cells in an adult human [5], a number that is 100 times more than all neurons in the brain. The endothelium tissue not only is a mechanical barrier between blood and other tissues, but also resembles the endocrine system [16]. Indeed, a prominent function of endothelial cells (ECs) is to release vasoactive substances that act on the smooth muscle (SM) to produce vasoconstriction or vasodilation, maintaining a homeostatic state of vascular tones under different conditions. How the ECs selectively release vasodilators or vasoconstrictors is unclear.

Most endocrine cells are excitable, which secrete hormones and transmitters via depolarization and firing activity [21]. In contrast, ECs are nonexcitable. Whether the membrane potential regulates substance release from the ECs remains elusive. It is known that the membrane

* Corresponding author at: Department of Biology, Georgia State, University, 50 Decatur Street, Atlanta, GA 30302, USA. Tel.: +1 404 413 5404; fax: +1 404 413 5301. E-mail address: cjiang@gsu.edu (C. Jiang). potential can affect a number of ion channels, transporters, intracellular 58 Ca²⁺, intracellular pH, etc. Activity of these molecules can in turn 59 change cellular functions. Therefore, it is reasonable to believe that 60 depolarization can affect the endothelium function. If such an assumption is proven correct, then it would be possible to reveal whether the 62 endothelial depolarization results in vasodilation or vasoconstriction. 63 To address these issues, novel methods are needed to selectively intervene to the membrane potentials of ECs when they remain interacting 65 with vascular SM in situ, which will help to understand EC function in 66 vascular tone regulation, and may have impacts on therapeutic designs 67 for several cardiovascular diseases.

The successful development of optogenetics in neuroscience 69 research [3,23] provides a unique way to access the endothelial mem-70 brane potentials with light. Generally, the optogenetics is a combination 71 of genetics, electrophysiology and optics to control well-defined events 72 within specific cells of living tissue by expressing an opsin in the cells. 73 This approach allows to control membrane potentials and excitability 74 of the opsin-expressing cells, which has been achieved in various 75 types of neurons [27], glia [8], myocardium [2], skeletal muscle cells 76 [24] and the vascular smooth muscle [28].

To demonstrate whether the EC function can be manipulated by 78 optogenetics, we developed a new strain of mice that expressed 79 channelrhodopsin (ChR) in ECs. The expression of ChR was detected 80 in the lumen of blood vessels from multiple organs. Characteristics of 81 optoactivation of ECs, including membrane excitability and vasomotor 82

http://dx.doi.org/10.1016/j.vph.2015.05.009 1537-1891/© 2015 Published by Elsevier Inc. 2

83 84

85

86

90

91

92

93

94

95

96

97

98

99

100

101 102

103

104

108

109

110

111

112

113

114

115

116

117

118 119

120

121 122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

reactivity, were studied in the heart and kidney using combined optostimulation and traditional physiological techniques. Surprisingly, our results indicated that optostimulation of ECs can produce fast, reproducible, long-lasting vasoconstriction that is comparable in strength to the popular vasoconstrictor phenylephrine (PE).

2. Methods and materials

2.1. Generation of the cdh5-ChR transgenic mouse

All experimental procedures in the animal were conducted in accordance with the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals and were approved by the Georgia State University Institutional Animal Care and Use Committee. Transgenic cdh5-ChR mice with fluorescence labeled endothelium were generated by mating the cdh5 promoter-driven Cre mice (B6.FVB-Tg(Cdh5-Cre)7Mlia/J, stock no. 006137; JaxMice) and cross-bred them with ChR-loxP mice (B6; 129S-Gt(ROSA)26Sor^{tm32(CAG-COP4*H134R/EYFP)Hze}/I. stock no. 012569; JaxMice). Animals were genotyped by PCR using punched ear or tail tissue. The presence of the Cre transgene (~100 bp) was detected using the following primers: Cre fw: 5' GCGGTCTGGCAG TAAAAACTA TC and Cre re: 5' GTGAAACAGCATTGCTGTCACTT, which would not distinguish hemizygous from homozygous mice. The presence of loxP was detected by using following primers with indication of ChRloxP (212 bp), heterozygote (212 bp and 297 bp), or WT (297 bp): WT ChR fw: 5' AAGGGAGCTGCAGTGGAGTA and WT ChR re: 5' CCGAAAAT CTGTGGGAAGTC; ChR fw: 5' ACATGGTCCTGCTGGAGTTC and ChR re: 5' GGCATTAAAGCAGCGTATCC.

2.2. Histology of ChR labeled endothelium in multiple organs

Heart and kidney from cdh5–ChR and wild type (WT) mice were fixed in 1% paraformaldehyde at room temperature for over 4 h and then dehydrated in 30% sucrose in phosphate buffered saline (PBS) at 4 °C for 24 h. Fixed tissues were embedded in the Tissue-TekTM CRYO-OCT Compound (Andwin Scientific, Torrance, CA, 4583), and cut into 8–10 μ m slices by using the Microm HM 550 Cryostats system (Thermo Scientific, PA, 22–050–337). Dura mater was peeled off from inner side of skull and mount on glassed slices directly. YFP fluorescence was detected with 514/527 nm (excitation/emission wavelength) filters under the microscope (Carl Zeiss, Gottingen, Germany, Axiovert 200).

2.3. Acute dissociation of aortic ECs

ECs were acutely dissociated from aorta obtained from both cdh5–ChR and WT mice by enzymatic dissociation for 10–15 min at 37 C using neutral protease (8 U/ml, obtained from Sigma, St. Louis, MO) and elastase (2 U/ml, Worthington, Lakewood, NJ, USA) mg/ml in the following digestion buffer (in mM): 138 NaCl, 5 KCl, 1.5 MgCl₂, 0.42 Na₂HPO₄, 0.44 NaH₂PO₄, 0.1 CaCl₂, 10 HEPES, 4.2 NaHCO₃ and 0.3% BSA. This was followed by a 1–2 min 37 C incubation with collagenase type IA (120 U/ml, obtained from Sigma, St. Louis, MO). The tissue segments were then washed with digestion buffer and gently triturated with a fire polished glass pipettes. The trituration solution containing ECs was dropped on a Petri dish coated with poly–L-lysine (Sigma, P8920) and easily identified via fluorescence microscopy.

2.4. Electrophysiology

Dissociated ECs were placed in the recording chamber and identified by YFP fluorescence using same microscope set up as described under histology section. Whole-cell currents and membrane potentials of the dissociated ECs were recorded at room temperature in the voltage and current clamp mode, respective. Recorded signals were amplified with an Axopatch 200B amplifier (Molecular Devices, Union City, CA),

digitized at 10 kHz, filtered at 2 kHz, and collected with the Clampex 140 10 data acquisition software (Molecular Devices, Union City, CA). The 141 patch pipettes with resistance of 4–6 M Ω were made with 1.2 mm bo- 142 rosilicate glass capillaries (Sutter Instrument CO., Novato, CA). The opti- 143 cal stimulation was delivered by using a xenon arc lamp with high- 144 speed switcher (Lambda DG-4, Sutter Instruments, Novato, CA). The 145 light source was connected to the incident-light illuminator port of 146 the microscope, and passed through a 470 nm bandpass filter 147 (~20 mW/mm²). Light pulse trains were generated with the Digitimer 148 D4030 pulse generator (Digitimer Ltd., Letchworth Garden City, UK). 149 The solution applied to the bath contained (in mM) 130.0 NaCl, 10.0 150 KCl, 1.0 MgCl₂, 1.5 CaCl₂, 10.0 glucose, 10.0 HEPES and 3.0 NaOH 151 (pH 7.4). The internal (pipette) solution contained (in mM) 10.0 KCl, 152 133.0 K-gluconate, 5.0 EGTA, 5.0 glucose, 1.0 K₂-ATP, 0.5 Na-ADP, and 153 10.0 HEPES (pH 7.4), and the final Mg²⁺ concentration was adjusted 154 to 1 mM using a [Ca²⁺]/[Mg²⁺] calculation software Maxchelator 155 (Chris Patton, Stanford University, Pacific Grove, CA). 156

157

179

185

191

2.5. Langendorff heart perfusion

Coronary circulation resistance was studied in the Langendorff iso- 158 lated and perfused heart preparation. The heart and lungs were entirely 159 removed from a terminally euthanized mice, and placed in the ice-cold 160 Krebs-Henseleit (KH) solution containing (in mM): 119 NaCl, 4.7 KCl, 161 2.5 MgSO₄, 2.5 CaCl₂, 10 glucose, 0.5 disodium EDTA, and 25 NaHCO₃. 162 All of pulmonary arteries and veins were tightened by cotton thread 163 followed by removal of lungs. Then a cannula was inserted in the ascending aorta connected to the perfusion apparatus. This cannula is at- 165 tached to the outflow of a reservoir containing an oxygenated KH 166 solution, maintained at >~35 °C, and continuously gassed with 5% CO₂ 167 and 95% O₂. The perfusion solution was delivered to coronary arteries 168 in the retrograde direction through the aorta. After the perfusion 169 speed was determined in each heart at a hydrostatic pressure (80 cm 170 H₂O), perfusion at constant flow (0.2-0.4 ml/min) was carried out 171 with a calibrated roller pump (Syringe Pump, Farmingdale, NY, NE- 172 300, NE-4000). The perfusate exited the coronary venous circulation 173 through the coronary sinus in the open vena cava. The viability of the 174 isolated and perfused heart was assessed by its spontaneous beating 175 (>250 beats/min), coronary vasoconstriction to 10^{-5} M PE and $_{176}$ 60 mM KCl, and coronary vasodilation response to the β receptor ago- 177 nist isoproterenol (Isop, 10^{-5} M). 178

2.6. Renal perfusion

Kidney from both cdh5–ChR and WT mice were isolated, cannulated 180 through renal artery, and perfused at a constant rate (0.2–0.4 ml/min at 181 baseline) with KH solution at 37 °C as described above. The viability of 182 the isolated and perfused kidney was also assessed by renal vascular re- 183 sponses to 10^{-5} M PE, Isop, and KCl. 184

2.7. Data analysis

The electrophysiological data were analyzed with Clampfit 10.3 soft- 186 ware. Data are presented as means \pm SE. Student's t-test and one-way 187 ANOVA were used to perform the statistical analysis. Difference was 188 considered significant when $P \leq 0.05$.

3. Results 190

3.1. Generation of transgenic mice with ChR expression in ECs

To achieve endothelial expression of ChR, we took the advantage of 192 two strains of commercially available mice, *cdh5* promoter-driven Cre 193 mice (B6.FVB-Tg(*Cdh5*-Cre)7Mlia/J, stock no. 006137; JaxMice) [1] and 194 ChR-loxP mice (B6; 129S-Gt(ROSA)26Sor^{tm32(CAG-COP4*H134R/EYFP)Hze}/J, 195 stock no. 012569; JaxMice) [22], to generate a new strain of transgenic 196

Download English Version:

https://daneshyari.com/en/article/5847298

Download Persian Version:

https://daneshyari.com/article/5847298

<u>Daneshyari.com</u>