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a  b  s  t  r  a  c  t

The  present  work  was  carried  out  to  design  and  develop  novel  QSAR  models  using  2D-QSAR  and  3D-QSAR
with  CoMFA  methodology  for prediction  of insecticidal  activity  of organophosphate  (OP)  molecules.  The
models  were  validated  on  an  entirely  different  external  dataset  of in-house  generated  combinatorial
library  of  OPs,  by  completely  different  computational  approach  of molecular  docking  against  the  target
AChE  protein  of Musca  domestica.  The  dock  scores  were  observed  to be in  good  correlation  with  2D-QSAR
and  3D-QSAR  with  CoMFA  predicted  activities  and  had  the  correlation  coefficients  (r2)  of −0.62  and  −0.63,
respectively.  The  activities  predicted  by 2D-QSAR  and  3D-QSAR  with  CoMFA  were  also  observed  to  be
highly  correlated  with  r2 =  0.82.  Also,  the combinatorial  library  molecules  were  screened  for  toxicity  in
non-target  organisms  and degradability  using  USEPA-EPI  Suite.  The  work  was first  step  towards  computer
aided  design  and  development  of  novel  OP pesticide  candidates  with  good  insecticidal  property  but  lower
toxicity  in  non-targeted  organisms  and  having  biodegradation  potential.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Organophosphate (OP) compounds are among the most widely
used pest control agents. The usage of OPs has increased dra-
matically since the worldwide ban or restriction on persistent
organochlorines like DDT and BHC, during 1970s. Only 1% of about
4 million tonnes of chemical pesticides, applied annually, reaches
the target pest, while the rest affect non-target organisms, causing
environmental and health menace (Gavrilescu, 2005). The insec-
ticidal activity of OPs and their toxicity to non-target organisms
including mammals is majorly attributed to their ability to bind,
phosphorylate and inactivate the enzyme acetylcholine esterase,
thus making the later unavailable for normal catalysis at neu-
ral junctions, i.e., the hydrolysis of neurotransmitter acetylcholine
(ACh) (Fukuto, 1990; Richardson, 1995; Wilson and Tisdell, 2001;
Čolović  et al., 2013; Makhaeva et al., 2014). The resistance in target
organisms for pesticides is another cause of concern, as it leads
to elevated applications by the end users (Fukuto, 1990; Zalom
et al., 2005). Several cases of insecticide resistance to OPs in tar-
get pests have been reported (Molina and Figueroa, 2009; Osta
et al., 2012; Temeyer et al., 2014; Zhao et al., 2014). These facts
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have always paved the way for design and development of new
pesticides, including OPs.

Computational chemistry has always been in the central stage
of modern days molecule design including drugs and pesticides, as
they provide a cheaper and rapid alternative to in vitro and in vivo
assays, so as to follow the ‘3Rs’ policy of reducing, refining and
replacing animal testing for primitive studies (Price and Watkins,
2003). Quantitative Structure Activity Relationship (QSAR) meth-
ods are the forerunners of computational tools in drug and pesticide
designing (Saini and Kumar, 2014a). QSAR analysis results in gen-
eration of statistical models that are regarded as very efficient tool
in both drug discovery and environmental toxicology for predic-
tion and classification of biological activities of new and untested
compounds (Perkins et al., 2003). Here, we report about QSAR
studies with 2D- and CoMFA insights for designing new non-
sulfur aromatic OP molecules having good insecticidal activity,
lower toxicity in non-target organisms and biodegradation poten-
tial. The work also involved generation of combinatorial library of
OP molecules analogous to the molecules selected for QSAR studies.
These molecules were then evaluated for their insecticidal activity
using generated QSAR models and for their toxicity and degradabil-
ity using EPI suite (USEPA, 2013). The present study also reports
about a novel method to validate, in-silico, the generated QSAR
models using molecular docking simulation as reported earlier by
us (Saini and Kumar, 2014b).
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Table  1
Data set of OP analogues taken for QSAR analyses showing functional groups at two different substitution points. Number prefix at point X refers to position 3 (Meta) or
position  4 (Para) of template.

Molecule ID Functional group at
substitution point

Experimental
pLD50 against
Musca nebulo

Predicted pLD50

(2D-QSAR)
Predicted pLD50

(3D-QSAR)

R X

OP 01 CH3 H 2.75 2.68 2.58
OP  02 CH3 3-CH3 2 2.67 1.98
OP  03 CH3 4-CH3 1.99 2.68 1.96
OP  04 CH3 4-OCH3 2 1.98 2.24
OP  05 CH3 3-Cl 2.1 2.78 2.84
OP  06 CH3 4-Cl 2.6 2.78 2.47
OP  07 CH3 3-Br 4 4.11 3.38
OP  08 CH3 4-Br 3.53 4.11 3.32
OP  09 CH3 3-CN 4.99 4.49 5.02
OP  10 CH3 4-CN 4.84 4.49 4.85
OP  11 CH3 3-NO2 4.9 5.09 4.91
OP  12 CH3 4-NO2 5.1 4.99 4.97
OP  13 C2H5 H 3.2 2.68 3.26
OP  14 C2H5 4-CH3 3 2.68 2.71
OP  15 C2H5 3-Cl 3.8 2.76 3.99
OP  16 C2H5 4-Cl 3.72 2.76 3.99
OP  17 C2H5 3-Br 4.11 3.93 2.99
OP  18 C2H5 4-Br 4.06 3.93 4.01
OP  19 C2H5 3-CN 5 4.49 5.04
OP  20 C2H5 4-CN 5.1 4.5 4.95
OP  21 C2H5 3-NO2 5.1 5.09 4.99
OP  22 C2H5 4-NO2 5.2 4.97 4.91
OP  23 C2H5 2,4-Cl 4.3 3.14 4.35
OP  24 C2H5 2,5-Cl 4.1 3.13 4.45
OP  25 C4H9 H 2.5 2.68 2.31
OP  26 C4H9 3-CH3 2 2.67 1.98
OP  27 C4H9 4-CH3 2.1 2.678 2.17
OP  28 C4H9 4-OCH3 2.1 1.88 3.95
OP  29 C4H9 3-Cl 2.8 2.75 2.72
OP  30 C4H9 4-Cl 2.5 2.74 2.32
OP  31 C4H9 4-Br 2.95 3.68 2.87
OP  32 C4H9 3-CN 4 4.49 4.62
OP  33 C4H9 4-CN 4.01 4.5 4.36
OP  34 C4H9 3-NO2 4.21 5.09 3.81
OP  35 C4H9 4-NO2 4.38 5.00 4.62

2. Materials and methods

2.1. Generation of 2D-QSAR

For the generation of QSAR models for insecticidal activity of OP
pesticide, the activity data was collected and analyzed after exten-
sive literature search. A total of 35 OPs analogues were taken for
the QSAR study and represented a set of molecules, reported ear-
lier (Gandhe et al., 1990), with different functional groups at two
positions -R and -X on the basic templates, along with their cor-
responding acute toxicity data (log LD50) of these compounds for
Housefly (Musca nebulo L.) as mentioned in Table 1. The biological
activity of selected compounds covered a range of more than 3 log
units (pLD50 = 1.99–5.2) and hence very suitable for QSAR studies.
These data were used as a dependent variable of QSAR Pro module
of Vlife MD  Suite. A total of 339 descriptors were calculated for each
molecule that belonged to physico-chemical type descriptor (239)
and atom type count descriptor (100). The descriptors were man-
ually deleted from further analysis if their values were either zero
or uniform for all the molecules. Descriptors having less variability
were also deleted by ‘Remove invariable columns’ tab of 2D-QSAR
in Vlife QSAR to reach a final descriptor count of 144. The curated
dataset was then subjected to 2D-QSAR model generation. Out of
35 molecules of dataset, 24 molecules were taken as training set
while 11 molecules (OP01, OP03, OP12, OP16, OP19, OP24, OP25,

OP29, OP30, OP31 and OP34) were selected as test set. The training
set (70%) selection was  done on random basis. The 2D-QSAR model
was generated by using different default methods of QSAR Pro of
Vlife MDS  namely “stepwise forward” and “multiple regressions”
methods. The number of variables in final equation was screened
from 3 (minimum) to 6 (maximum). The model generated with 4
variables in final equation was observed to be most statistically
significant and hence considered for generating QSAR equation.
Finally QSAR model with highest q2 and r2 were selected keeping
in view optimum values of other significant statistical parameters
viz. pred r2, F-test value, Y-randomization Z-score (Tropsha et al.,
2003). The variable selection and model building method wizard
summary used for 2D-QSAR study was  as per Table 2.

2.2. Generation of 3D-QSAR with CoMFA

For CoMFA studies, same set of 35 OPs, as used for 2D-QSAR anal-
ysis, was selected (Table 1) while SYBYL-X 2.1 package (SYBYL-X)
was used for generation of models. The entire set of molecules used
for CoMFA analysis were aligned using a common sub-structure
because the results of CoMFA are highly sensitive to the alignment
rules, orientation of the aligned molecules, lattice shifting step size
and probe atom type (Saini and Kumar, 2014b). The ‘database align’
module of SYBYL was  used for the purpose using the energy mini-
mized structure of most bioactive OP molecule (OP22) as template
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