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a  b  s  t  r  a  c  t

There is an increasing need for the rapid safety assessment of chemicals by both industries

and regulatory agencies throughout the world. In silico techniques are practical alternatives

in  the environmental hazard assessment. In this background, quantitative structure–toxicity

relationship (QSTR) analysis has been performed on toxicity of phenols and thiophenols to

Photobacterium phosphoreum. The techniques of classification and regression trees (CART)

and  least squares support vector regressions (LS-SVR) were applied successfully as variable

selection and mapping tools, respectively. Four descriptors selected by the CART technique

have been used as inputs of the LS-SVR for prediction of toxicities. The best model explains

91.8% leave-one-out predicted variance and 93.0% external predicted variance. The pre-

dictive performance of the CART-LS-SVR model was significantly better than the previous

reported models based on CoMFA/CoMSIA and stepwise MLR techniques, suggesting that

the  present methodology may be useful to predict of toxicity, safety and risk assessment of

chemicals.

© 2012 Elsevier B.V. All rights reserved.

1.  Introduction

The environment is regularly exposed to phenols and thio-
phenols derivatives including nitro, chloro, fluoro and etc
substitutes through their use in industrial processes. Infor-
mation on aquatic toxicity is required in order to assess the
hazard and risk of chemical substances to soil, marine and
freshwater organisms living in the water column (Netzeva
et al., 2008). Phenols and thiophenols are nearly ubiquitous
pollutants in all aquatic and terrestrial ecosystems. A number
of different mechanisms of toxic action have been recognized
for these compounds including non-reactive polar narcosis,
through to respiratory inhibition or uncoupling of oxidative
phosphorylation, disruption of biological macromolecules due
to the formation of free radicals or electrophilic alkylation,
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as well as endocrine disruption (Netzeva et al., 2008). The
recent European Union REACH (Registration, Evaluation and
Authorisation of Chemicals) legislation requires toxicologi-
cal hazard and risk assessments for all new and existing
chemicals. In addition, the use of in silico methods is explic-
itly encouraged and even required in the REACH regulation
(Worth et al., 2007). Therefore, there is an essential need to use
computation-based quantitative structure–toxicity relation-
ship (QSTR) modeling, as an in silico technique, for providing
information about the physicochemical properties of chem-
icals and their environmental fate as well as their human
health effects (Lessigiarska et al., 2006). The use of QSTR mod-
eling for toxicological predictions would help determine the
potential adverse effects of chemical entities in risk assess-
ment, chemical screening, and priority setting (Lessigiarska
et al., 2006).
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Photobacterium phosphoreum is a kind of luminescent bac-
terium in seawater and its character of luminous intensity
change with toxic substance inhibition of growth (i.e., cell
density) made it as an index for chemical toxicity measur-
ing and water quality monitoring. For the development of
QSTR models, P. phosphoreum has been largely used recently
(Yu et al., 2009). An obvious advantage of this sort of stud-
ies is to minimize testing toxicity data in the laboratory and
environmental damages. The ultimate role of formulating
the QSTR is to suggest mathematical models estimating the
toxicities by relying on the assumption that these are deter-
mined solely by the molecular structures of the chemicals. The
structure is therefore translated into the so-called molecular
descriptors, describing some relevant feature of the com-
pounds, with mathematical formulae obtained from Chemical
Graph Theory, Information Theory, Quantum Mechanics, etc.
(Asadollahi-Baboli, 2011). In the next step, machine learning
methods should be employed to select the most important
descriptors that characterize the property under considera-
tion in the best possible manner.

The objectives of this study were: (1) the QSTR analysis
has been performed on phenols and thiophenols toxicity to
P. phosphoreum on the base of chemical descriptors derived
from molecular structures. CART algorithm combined with
LS-SVR was used for variable selection and model devel-
oping. (2) The results of CART-LS-SVR were compared to
those of the previous works. Also, the QSTR model was
validated by internal validation, external validation and cal-
culation of the applicability domain. (3) Besides, we  employ
the best robust QSTR model to estimate the unknown

aqueous toxicity of 18 structures. Finally, the results encourage
considering this alternative way for the prediction of toxicity
using QSTR/CART-LS-SVR model without direct determination
of toxicity.

2.  Materials  and  methods

A data set of 51 unique phenols and thiophenols toxicity in
terms of pEC50 (mol L−1) was collected from the literature (Yu
et al., 2009, 2012). The term half maximal effective concen-
tration (EC50) refers to the concentration of a toxicant which
induces a response halfway between the baseline and max-
imum after 15 min. It has been proved that there is a good
agreement between environmental toxicity and toxic potency
of P. phosphoreum (Lin et al., 2011). The list of compounds
along with their toxicity values are shown in Table 1. The
total dataset are randomly divided into calibration set and
prediction set considering chemical diversity in a ratio of
approximate 75:25 (38 and 13 compounds, respectively). The
calibration set is used to construct QSTR model and the pre-
diction set to validate the external prediction ability of the
resulting QSTR model.

In order to calculate the molecular descriptors, struc-
tures of phenols and thiophenols were built using ChemDraw
Ultra (version 10.0) and then the molecular structures were
optimized using semiempirical quantum-chemical method
AM1  Hamiltonian (Zerner et al., 1991) implemented in Hyper-
Chem software (version 7.0) to generate the energy-minimized
conformations. These conformations were used to calculate

Table 1 – The experimental and predicted pEC50 values of substituted phenol and thiophenol using CART-LS-SVR model.

No. Chemical Exp. pEC50 Pred. pEC50 No. Chemical Exp. pEC50 Pred. pEC50

1 Phenol 2.72 2.59 27 2,4-Difluorothiophenol 5.15 5.54
2 Catechol 3.14 3.49 28 2-Chlorothiophenola 4.90 5.21
3 p-Nitrophenola 3.72 4.12 29 3-Chlorothiophenol 5.03 5.24
4 o-Aminophenol 3.34 3.24 30 2,3-Dichlorothiophenol 4.91 4.65
5 p-Chlorophenol 3.88 3.96 31 4-Chlorothiophenola 4.99 5.06
6 m-Cresola 3.31 3.54 32 2,4-Dichlorothiophenol 5.59 5.89
7 Hydroquinone 3.14 3.18 33 3,5-Dichlorothiophenol 5.11 5.29
8 o-Cresol 3.35 3.73 34 2,5-Dichlorothiophenol 5.16 5.10
9 o-Chlorophenol 3.43 3.57 35 2,6-Dichlorothiophenol 4.99 4.97

10 2,3-Dimethylphenol 3.60 4.01 36 3-Bromothiophenola 4.57 4.39
11 4-tert-Butylcatechol 5.87 5.74 37 4-Bromothiophenol 5.60 5.79
12 2,4,6-Trinitrophenola 2.51 2.30 38 2-Bromothiophenol 4.88 4.95
13 o-Nitrophenol 3.48 3.76 39 2-Amino-4-chlorothiophenol 5.37 5.69
14 m-Nitrophenola 3.31 3.45 40 2,4-Dimethylthiophenol 4.77 4.63
15 Resorcinol 2.22 2.61 41 2,5-Dimethylthiophenola 4.66 4.44
16 p-Aminophenol 3.27 3.23 42 o-Methylthiophenol 4.49 4.31
17 p-Cresol 3.71 3.70 43 p-Methylthiophenola 5.89 6.07
18 2,4-Dichlorophenol 4.01 4.17 44 2,6-Dimethylthiophenol 4.64 4.38
19 4-Fluorophenola 2.22 2.63 45 m-Methylthiophenol 4.60 4.50
20 2,4-difluorophenol 2.33 2.73 46 3,4-Dimethylthiophenol 4.95 4.90
21 Thiophenol 5.71 5.97 47 2-Aminothiophenol 4.72 5.03
22 2-Fluorothiophenol 4.78 5.23 48 4-Aminothiophenola 4.66 5.35
23 4-Fluorothiophenol 4.97 5.43 49 3-Methoxythiophenol 4.26 4.02
24 3-Fluorothiophenola 5.06 4.90 50 3,4-Dimethoxythiophenola 4.72 4.67
25 2,3,5,6-Tetrafluorothiophenol 4.86 4.79 51 4-Tertiary butylthiophenol 5.34 5.09
26 Pentafluorothiophenol 4.34 4.68

a Prediction set chemicals.
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