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28Bioconcentration refers to the process of uptake and buildup of chemicals in living organisms. Experi-
29mental measurement of bioconcentration factor (BCF) is time-consuming and expensive, and is not fea-
30sible for a large number of chemicals of regulatory concern. Quantitative structure–activity relationship
31(QSAR) models are used for estimating BCF values to help in risk assessment of a chemical. This paper
32presents the results of a QSAR study conducted to address an important problem encountered in the pre-
33diction of the BCF of highly hydrophobic chemicals. A new QSAR model is derived using a dataset of
34diverse organic chemicals previously tested in a United States Environmental Protection Agency labora-
35tory. It is noted that the linear relationship between the BCF and hydrophobic parameter, i.e., calculated
36octanol–water partition coefficient (ClogP), breaks down for highly hydrophobic chemicals. The parabolic
37QSAR equation, log BCF = 3.036 ClogP � 0.197 ClogP2 � 0.808 MgVol (n = 28, r2 = 0.817, q2 = 0.761,
38s = 0.558) (experimental log BCF range = 0.44–5.29, ClogP range = 3.16–11.27), suggests that a non-linear
39relationship between BCF and the hydrophobic parameter, along with inclusion of additional molecular
40size, weight and/or volume parameters, should be considered while developing a QSAR model for more
41reliable prediction of the BCF of highly hydrophobic chemicals.
42� 2014 Elsevier Ltd. All rights reserved.
43

44

45

46 1. Introduction

47 Globally, regulatory agencies are developing methods and crite-
48 ria for hazard and risk assessment of chemicQ2 als (ASTM, 1993;
49 ECETOC, 1995; ECHA, 2012; OECD, 2007). Bioaccumulation and
50 bioconcentration refer to the process of uptake and buildup of
51 chemicals in living organisms. The bioaccumulation factor (BAF)
52 parameter is used as a measure of a chemical’s bioaccumulation
53 potential. If the BAF value of a chemical is not available, its BCF
54 is used to assess the bioaccumulation potential. Experimental mea-
55 surement of BAF and BCF values is time-consuming and expensive,
56 and is not feasible for a large number of chemicals of regulatory
57 concern. Therefore, attention is focused on estimation of these val-
58 ues by using quantitative structure–activity relationship (QSAR)
59 models. QSAR models are used as screening tools to assess the
60 effect of a large number of chemicals on the environment and
61 human health. These models establish empirical relationships
62 between the molecular parameters (physico-chemical properties)

63of the organic chemicals and physiological responses in the
64organism. Based on a large number of QSAR studies, it has been
65noted that the dataset of chemicals should exhibit a wide range
66in their biological activities and parameter values for developing
67a robust QSAR model (Hansch and Leo, 1995; Hansch et al., 1995).
68The most common method for estimating BCF value consists of
69developing QSAR models establishing correlations between BCF
70and hydrophobicity of a chemical as measured by the logarithm
71of the octanol–water partition coefficient (denoted by logP or
72logKow). In regulatory context, the objective is to use parameters
73which are easy to calculate and compare (such as logP) and
74develop simple models which could be used to predict the most
75accurate BCF value (ASTM, 1993; ECETOC, 1995; ECHA, 2012;
76Mackay and Fraser, 2002; OECD, 2007).
77Several QSAR models have been proposed for predicting the BCF
78of organic chemicals, which use a linear, parabolic, bilinear or poly-
79nomial relationship, extensively reviewed in Arnot and Gobas
80(2006), Devillers et al. (1998), Müller and Nendza (2009), and
81Pavan et al. (2006). Most of the QSAR models reported for the pre-
82diction of BCF within a regulatory context are based on the corre-
83lation of log BCF with logKow. For a chemical, the mechanistic basis
84underlying the relationship of BCF with logKow is the analogy
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85 between the partitioning process between a biological lipid mem-
86 brane and water, and the partitioning process between n-octanol
87 and water (Arnot and Gobas, 2003, 2006; Bintein et al., 1993;
88 Dearden, 2004; Dearden and Hewitt, 2010; Devillers et al., 1998;
89 Dimitrov et al., 2002; Jonker and van der Haijden, 2007; Kubinyi,
90 1976; Müller and Nendza, 2009; Pavan et al., 2006; USEPA, 2012;
91 Veith et al., 1979). Few QSAR models have been reported using
92 other experimentally derived parameters such as water solubility
93 (S), and soil adsorption coefficients (Kenaga and Goring, 1980).
94 However, their applicability is limited due to the problem of data
95 availability. To avoid new tests, theoretical molecular descriptors
96 (such as topological, connectivity indices, quantum, and other
97 descriptors) have been used for developing BCF prediction models.
98 Assessment of their ability to correctly predict the BCF value of a
99 chemical resulted in a large number of incorrect classifications

100 (Pavan et al., 2006).
101 Arnot and Gobas (2003) proposed a mechanistic QSAR model
102 for predicting the BCF and BAF of organic chemicals in aquatic
103 food webs. This model uses the logKow and a number of correc-
104 tion factors, but does not consider a chemical’s molecular weight
105 and size-related parameters. EPI Suite software from United
106 States Environmental Protection Agency (USEPA) (2012) uses
107 the BCFBAF program, based on the Arnot–Gobas model, to
108 predict the BCF and BAF values of a chemical. The BCFBAF
109 program uses two linear QSAR equations for predicting the BCF
110 of a chemical. The first equation with a positive linear hydropho-
111 bic term indicates that the log BCF increases linearly with log Kow

112 values for log Kow 6 7.0, while the second equation with a nega-
113 tive linear hydrophobic term shows a decreasing linear relation-
114 ship for values of logKow > 7.0. According to this model the
115 decrease in BCF with increasing log Kow (>7.0) for highly hydro-
116 phobic chemicals is mainly due to adsorption of chemical in the
117 water phase and not due to biomagnification or steric factors
118 affecting membrane permeability (Arnot and Gobas, 2003). In
119 another study, Bintein et al. (1993) reported a comparative anal-
120 ysis of linear, parabolic and bilinear QSAR models to explain the
121 nonlinear dependence of fish bioconcentration on logP. These
122 models indicate that the linear relationship between log BCF
123 and hydrophobicity is unable to explain the low BCF of highly
124 hydrophobic chemicals. The authors (Bintein et al., 1993) con-
125 cluded that the parabolic model, and preferably the bilinear
126 model (Kubinyi, 1976), is more useful.
127 The European Chemical Agencies (ECHA) guidance document
128 indicates that the log BCF increases linearly with logKow values
129 <5 and a decreasing linear relationship is observed for higher val-
130 ues of logKow. It is noted that apart from experimental errors in the
131 determination of BCF values for these very hydrophobic chemicals,
132 reduced uptake due to the increasing molecular size may also be
133 responsible for this relationship (ECHA, 2012). Dimitrov et al.
134 (2002) established that the relationship between log BCF and
135 logKow for highly hydrophobic chemicals can be explained by
136 including the molecular size parameter in the QSAR model. The
137 ECHA guidance document also suggests that the molecular weight
138 parameter, even though not directly related to the molecular size
139 of a compound, together with other information can be used to
140 assess a chemical’s bioaccumulation potential (ECHA, 2012). How-
141 ever, no experimental data have been reported to support a specific
142 threshold for the molecular weight parameter.
143 To predict the BCF values of highly hydrophobic chemicals, we
144 have derived a new QSAR model using a dataset of diverse organic
145 chemicals whose experimental BCF values were measured in a
146 USEPA laboratory (Veith et al., 1979). The developed model is val-
147 idated using cross validation, Tropsha’s metrics, rm

2 metrics, y-ran-
148 domization test, and applicability domain analysis. This new model
149 is discussed below and also compared with other QSAR models
150 reported in the literature.

1512. Materials and methods

1522.1. Selection of dataset

153Experimental log BCF values of 29 chemicals used in this study are taken from
154Veith et al. (1979) (see Table 1). This study on a diverse group of organic chemicals
155tested for bioconcentration in fathead minnow (Pimephales promelas) was con-
156ducted at a USEPA Environmental Research Laboratory. This is a good dataset for
157QSAR study as it includes a diverse group of organic chemicals including haloge-
158nated, nonhalogenated, and phosphate containing chemicals displaying a wide
159range in the parameter values (experimental log BCF range = 0.44–5.29, ClogP
160range = 3.16–11.27). Earlier models based on this dataset are used as an example
161for BCF prediction in the European Union Technical Guidance Document on risk
162assessment (Pavan et al., 2006). Out of 55 chemicals for which the BCF data were
163reported (Veith et al., 1979), only 30 chemicals were tested at the USEPA laboratory
164and the others were taken from different sources. We have used the BCF data of
165chemicals tested in the USEPA laboratory. One chemical ‘toluene diamine’, out of
166these 30 chemicals, is not included in our study due to uncertainty as to its
167structure.

1682.2. Calculation of molecular parameters

169The logP values listed in Table 1 are taken from Veith et al. (1979) and are pro-
170vided here for comparison. They were estimated by the reverse phase HPLC method
171(Veith and Morris, 1978). The ClogP and MgVol parameter values are calculated and
172auto loaded from the C-QSAR Program (2006). The utility of the C-QSAR program in
173comparative correlation analysis has been discussed in Hansch and Leo (1995).
174Within chemical families of structural congeners, biological activity is well pre-
175dicted from a chemical structure by the C-QSAR program. The parameters used in
176this report have been discussed in detail along with their applications in Hansch
177and Leo (1995). Briefly, ClogP is the calculated logP and is a measure of hydropho-
178bicity of a chemical (Leo et al., 1971; Leo, 1993), and MgVol is the molar volume cal-
179culated by the method of (Abraham, 1993; Zhao et al., 2003). Note that the ClogP
180values are for the neutral form of acids and bases that may be partially ionized. If
181the degree of ionization is about the same for a set of congeners, the ionization fac-
182tor can be neglected; otherwise, good correlation can be obtained using electronic
183terms (Leo et al., 1971; Leo, 1993).
184The correlation matrix for the parameters used in this study is given in Table 2.
185The correlation between experimental logP and ClogP values for 13,815 compounds
186in the CLOG program, which is a part of the C-QSAR Program (2006), is 0.98 (exper-
187imental logP = 1.00 ClogP � 0.03 (n = 13,815, r = 0.98, s = 0.35). Many programs are
188used for calculating octanol–water partition coefficients and are reviewed in
189Mannhold et al. (2009). However, we have used the ClogP parameter in this study
190as it has been widely used and cited by the QSAR community, both for environmen-
191tal studies and drug design (Arnot and Gobas, 2006; Devillers et al., 1998; Garg
192et al., 1999; Hansch et al., 1989; Leo and Hansch, 1999; Müller and Nendza,
1932009; Selassie et al., 2003; Smith et al., 2002, 2003, 2004, 2006), and a very high
194correlation (r = 0.98) between experimental logP and ClogP gives confidence in
195using ClogP values whenever experimental logP values are not available.
196The QSAR stepwise multiple linear regression (MLR) analyses are executed with
197the C-QSAR program and all the parameters are auto loaded (C-QSAR, 2006). In all
198the QSAR equations reported in this report, n is the number of data points, r is the
199correlation coefficient, s is the standard deviation, and q2 is the quality of fit of the
200data, calculated using Cramer et al.’s (1988) approach, which approaches the value
201of r2 as the quality of fit improves.

2023. Results and discussion

203First, we developed a QSAR model for the whole dataset using
204stepwise MLR analysis. Next, we divided the whole dataset into a
205training set and a test set and performed internal and external val-
206idation studies. Cross validation techniques were utilized for inter-
207nal validation, and the model developed using training set was
208used to predict the activity of test set chemicals. Tropsha’s and
209rm

2 metrics were also calculated to evaluate the internal and
210external predictive abilities of the QSAR model. To ensure the
211developed QSAR model is robust and not derived due to chance,
212the y-randomization test was performed. Lastly, the applicability
213domain of the developed QSAR model was evaluated to ascertain
214the reliability of the model.

2153.1. Model development

216Stepwise MLR analysis on whole dataset reported by Veith et al.
217(1979) (Table 1) resulted in Eqs. (1)–(3).
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