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A B S T R A C T

Organic solvents are widely used chemicals and the neurotoxic properties of some are well established. In
this study, we established nonlinear qualitative and quantitative structure-toxicity relationship (STR)
models for predicting neurotoxic classes and neurotoxicity of structurally diverse solvents in rodent test
species following OECD guideline principles for model development. Probabilistic neural network (PNN)
based qualitative and generalized regression neural network (GRNN) based quantitative STR models
were constructed using neurotoxicity data from rat and mouse studies. Further, interspecies correlation
based quantitative activity–activity relationship (QAAR) and global QSTR models were also developed
using the combined data set of both rodent species for predicting the neurotoxicity of solvents. The
constructed models were validated through deriving several statistical coefficients for the test data and
the prediction and generalization abilities of these models were evaluated. The qualitative STR models
(rat and mouse) yielded classification accuracies of 92.86% in the test data sets, whereas, the quantitative
STRs yielded correlation (R2) of >0.93 between the measured and model predicted toxicity values in both
the test data (rat and mouse). The prediction accuracies of the QAAR (R2 0.859) and global STR (R2 0.945)
models were comparable to those of the independent local STR models. The results suggest the ability of
the developed QSTR models to reliably predict binary neurotoxicity classes and the endpoint
neurotoxicities of the structurally diverse organic solvents.

ã 2015 Elsevier Inc. All rights reserved.

1. Introduction

Organic solvents are widely used in various applications
including emulsion and micro-emulsion formulation, shoe mak-
ing, degreasing, detergents, cosmetics, paint, metal processing,
auto manufacturing, aeronautical maintenance and manufactur-
ing, and pharmaceutical industries. Moreover, solvents may be
used in liquid-liquid extraction and absorption processes, as a
reaction medium and as a carrier, to deliver chemical compounds
in solutions in the required amounts (Gani et al., 2005; Al-Malah,
2012). Many organic solvents are low molecular weight com-
pounds and are volatile, thus transferring a fraction of their volume
to the atmospheric environment at room temperature. Inhalation
of solvent vapors is the most frequent type of occupational
exposure (Dick, 2006). The ability of various solvents to evoke
acute neurotoxic symptoms and signs is one crucial parameter for
the assessment of the hazard of the solvents for adverse human

health effects. This warrants assessing of risk of solvents in a
systematic manner. Although, experimental test protocols for
assessing the neurotoxicity of solvents in rodents have been
developed (OECD, 1997), these are tedious and time and resource
intensive. On the other hand, computational toxicology continues
to be an attractive, viable approach to reduce the amount of effort
and cost of experimental toxicity assessment (Chandler et al., 2011)
and provides a method for the early evaluation in the development
of new solvents (Cronin et al., 2003; Jaworska et al., 2003). The
European Union (EU) regulation “Registration, Evaluation, Autho-
rization and Restriction of Chemicals (REACH, 2015) advocates the
use of non-animal testing methods and in particular quantitative
structure-toxicity/activity relationship (QSTR/QSAR) approaches.
The OECD has provided a set of guidelines for development of
QSARs (OECD, 2007). A qualitative QSAR model may be useful in
classifying solvents into relative neurotoxicity classes (high or low)
and quantitative QSAR is expected to be a useful tool in predicting
the neurotoxicity potential of chemicals. A few attempts have been
made to develop QSAR models for the neurotoxicity of solvents in
rodents (Cronin, 1996; Estrada et al., 2001). However, both of these
QSAR studies, based on linear modeling methods, reported low
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prediction accuracies. Moreover, none of the studies attempted to
develop qualitative QSARs. Poor performance of the QSAR model
may be due to the selection of inappropriate modeling method or
irrelevant descriptors. Experimental toxicity data generally have
nonlinear structure and linear methods failing to capture nonlinear
dependence. Further, interspecies quantitative activity–activity
relationships (QAARs) (Cronin, 2010; Cassani et al., 2013;
Furuhama et al., 2015), which extrapolate data for one toxicity
endpoint to those for another toxicity endpoint, can be used to
determine the species-specific toxicity of a chemical. When the
toxicity values of defined chemicals for one endpoint correlate well
with the values for another endpoint, the chemicals can be
expected to have similar modes of action with respect to both
endpoints.

Probability density function (PDF) based neural networks, such
as probabilistic neural networks (PNNs), and generalized regres-
sion neural networks (GRNNs) capable of capturing the non-
linearities in the data have successfully been used in various
qualitative (classification) and quantitative (regression) QSAR
studies (Mosier and Jurs, 2002; Panaye et al., 2006; Singh et al.,
2013, 2014). These methods learn quickly and produce reproduc-
ible outputs without any risk for a local minimum of the error
surface (Walzack and Massart, 2000).

In this study, the PNN and GRNN based QSTR models were
established for the qualitative (neurotoxicity classes) and quanti-
tative neurotoxicity predictions of structurally diverse organic
solvents in rodents (Cronin, 1996) following the OECD guidelines
for QSAR validation. The predictive and generalization abilities of
the proposed QSTR models constructed here were evaluated using
several statistical criteria. The external predictive power of the
QSTR model was evaluated using the OECD recommended external
validation tests. Moreover, the possibility finding interspecies
correlations (ISC) for the experimental data for rat and mouse has
been investigated in order to derive a quantitative activity–activity
relationship (QAAR) model able to predict rat neurotoxicity from
the experimental data measured in mouse.

2. Materials and methods

2.1. Datasets

The rodent neurotoxicity data (pEC30 mM) of 47 organic
solvents were collected from the literature (Cronin, 1996). This
database contained experimental values for the neurotoxicities of
organic solvents in rats and mice. A detailed methodology for the
experimental measurements of the neurotoxicities of solvents is
provided elsewhere (Frantik et al., 1994). In brief, the experimental
values refer to a whole body exposure for 2 h in mouse and 4 h in
rats. Inhibition of propagation and maintenance of the electrically
evoked seizure discharge was used as a criterion of the acute
neurotropic effect. Out of a range of concentrations of solvents, an
effective concentration amounting to 30% of the maximum
possible effect (EC30) was reported. The selected solvent database
includes aromatic and aliphatic hydrocarbons, chlorinated hydro-
carbons, alcohols, ketones, and acetates. The neurotoxicity values
(pEC30, mM) of the solvents in rat and mouse vary between
�2.94 and �0.57; �2.98 and �0.82, respectively (Table S1,
Supplementary material).

2.2. Molecular descriptors and data processing

For calculating the descriptors, the SMILES (simplified molecu-
lar input line entry system) codes of the solvent molecules were
obtained using Chemspider (2015). The SMILES codes were then
used for the geometry optimization of the molecules using PM7
semi empirical method (ChemMop, 2015). PM7 is a parameterized

Hartree-Fock method, which is able to capture any specific
chemical interaction (Stewart, 2013). The optimized molecular
structures were transferred to Chemopy (2015) for the descriptor
calculation. A total of 1135 molecular descriptors were calculated
for each chemical that includes 1D, 2D (constitutional, connectivi-
ty, Basak, topology, Kappa, Burden, E-state, autocorrelations,
molecular property, charge, MOE-type) and 3D (geometrical,
charged partial surface area, Randic molecular profiles from the
geometrical matrix, MoRSE) descriptors. To reduce redundant and
useless information, descriptors with constant and near constant
values (variance < 0.5) were removed. Finally, 262 descriptors
were retained to undergo subsequent descriptor selection for QSTR
analysis. The most relevant parameters were then selected using
the model-fitting approach. Prior to model construction, the
neurotoxicity datasets (rat and mouse) were split into respective
training (70%) and test (30%) subsets using a random distribution
method. Using this approach, the samples are selected randomly
with a uniform distribution. For the training subset Ttr:
pðX 2 TtrÞ ¼ ntr=n,n ¼ jTj, ntr ¼ jTtrj—each sample has an equal
probability of selection. This method leads to low bias of the model
performance (Reitermanova, 2010). For determining the optimal
values of the model parameters, the models were trained (training
set) with the retained pool of descriptors through a 5-fold cross-
validation (CV) and computing the scoring function (mean squared
error, MSE) to rank the contribution of the descriptors in the
current set. The lowest ranked descriptors (<10% contribution)
were then removed in the successive steps (Singh et al., 2015). The
most significant descriptors were then retained and the corre-
sponding prediction accuracies were computed. The descriptor
selection process was performed separately for each modeling
method (PNN and GRNN). Finally retained descriptors for the
qualitative and quantitative QSTRs in both the test species (rat and
mouse) are presented in Table S2 (Supplementary material). For
qualitative QSTR modeling, the solvents were categorized as high
neurotoxic (EC30 > 50 mM) and low neurotoxic (EC30 > 50 mM),
rendering a total 25 compounds in the high neurotoxicity
(class = 1) and remaining 22 compounds in the low neurotoxicity
(class = 2) categories.

2.3. Model development, validation and applicability domain analysis

In this study, PNN and GRNN based QSTR models (quantitative
and quantitative) were established for predicting the class and
neurotoxicity of structurally diverse organic solvents in rats and
mice. An ISC based linear QAAR model was also constructed using
the rat and mouse neurotoxicity datasets. A brief account of these
methods is provided here.

2.3.1. QSTR modeling
PNN estimates the probability density function (PDF) of the

features of each class from the available training samples using the
Gaussian kernel function, which are then used in a Bayes decision
rule to perform the classification (Gelman et al., 2003). PNN uses a
nonparametric technique known as the Parzen window to
construct the class-dependent PDF for each classification category
required by Bayes’ theory. This allows determination of the chance
a given vector pattern lies within a given category. If the jth
training pattern for category C1 is xj, then the Parzen estimate of
the PDF for category C1 is;

F1ðxÞ ¼ 1

2ðpÞm=2smn

X
exp

ðx � xjÞTðx � xjÞ
2s2

" #
;

where n is the number of training patterns, m is the input space
dimension, j is the pattern number, and s is the adjustable
smoothing parameter (Goh, 2002). A PNN consists of a node in
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