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a b s t r a c t

Benchmark dose (BMD) modeling is increasingly used as the preferred approach to define the
point-of-departure for health risk assessment of chemicals. As data are inherently variable, there is
always a risk to select a model that defines a lower confidence bound of the BMD (BMDL) that, contrary
to expected, exceeds the true BMD. The aim of this study was to investigate how often and under what
circumstances such anomalies occur under current modeling practice. Continuous data were generated
from a realistic dose–effect curve by Monte Carlo simulations using four dose groups and a set of five dif-
ferent dose placement scenarios, group sizes between 5 and 50 animals and coefficients of variations of
5–15%. The BMD calculations were conducted using nested exponential models, as most BMD software
use nested approaches. ‘‘Non-protective’’ BMDLs (higher than true BMD) were frequently observed, in
some scenarios reaching 80%. The phenomenon was mainly related to the selection of the non-sigmoidal
exponential model (Effect = a � eb�dose). In conclusion, non-sigmoid models should be used with caution as
it may underestimate the risk, illustrating that awareness of the model selection process and sound iden-
tification of the point-of-departure is vital for health risk assessment.
� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Health risk assessment of chemicals is the process of character-
izing and quantifying the potential adverse health effects associ-
ated with exposure to chemicals (NRC, 1994). Characterizing the
hazardous properties of a chemical agent in quantitative terms in-
cludes selection of a relevant dataset and description of the dose–
effect relationship for the critical effect. With the exception of
direct acting carcinogenic substances it is assumed that there are
some doses that do not result in adverse effects (Dybing et al.,
2002; Edler et al., 2002). An important part of the risk assessment
is therefore the process of finding the threshold dose, below which
toxicity is not expected. Experimental data are used to describe the
dose–effect relationship and to define the point of departure (POD),
for development of reference or limit values such as acceptable or
tolerable daily intakes, occupational exposure limits, derived no

effect levels, population adjusted doses and acute guidance values.
Such values are key elements in the regulatory process to define
the quality standards for water, food, air, work places etc. It is
therefore of vital interest that the methods used to interpret toxi-
cological data are continuously examined and further developed to
ensure the best use of data.

Traditionally, the no-observed-adverse-effect level (NOAEL)
method is used as the POD in regulatory toxicity testing. The
NOAEL is defined as the highest tested dose that does not give an
effect which is statistically significant from that in the control
group (WHO, 1999). The benchmark dose (BMD), on the other
hand, is defined as the dose that results in a predefined effect level,
ideally at a level that is close to, but not yet, adverse. The BMD
method is suggested as a more scientifically sound alternative to
the NOAEL method and has been implemented in most regulatory
guidance documents as an alternative or preferred approach
(ECHA, 2008; EFSA, 2009; NAC/AEGL, 2001; Solecki et al., 2005;
USEPA, 1995; WHO, 2009). The BMD method involves fitting a
dose–effect curve, or a set of curves, to the data of interest. A crit-
ical effect size, also referred to as benchmark response, of 5% is of-
ten used as a default for continuous data. The lower bound of the
90% confidence interval of the BMD (BMDL) is suggested to be used
as the POD (Crump, 1984; Sand et al., 2008; USEPA, 2012).
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The BMD approach overcomes many of the weaknesses of the
NOAEL (Allen et al., 1994; Crump, 1984). BMD incorporates infor-
mation on the sample size and the shape of the dose–effect curve.
In addition, BMD values are not constrained to one of the experi-
mental doses, and are less dependent on the study design. Further-
more, high variability in the data and low number of subjects both
tend to result in a higher NOAEL, i.e. a less precautious POD,
whereas the BMDL values tend to become lower, i.e. more precau-
tious, as variability and sample size decreases. BMD aligned design
of experiments have also been suggested as a mean to refine and
reduce animal experiments (Öberg, 2010).

Several dose–effect or dose–response models may be fitted to
the data. Historically, power models and polynomials were used
for continuous data, but in recent years more attention has been gi-
ven to the nested exponential models and nested Hill models that
describe sigmoidal curves that level off at higher doses and are as-
sumed to be more biologically relevant (Sand et al., 2008). Nested
models are included in the most frequently used software for the
statistical analysis of dose–effect data, i.e. BMDS (USEPA, 2013),
developed by the US EPA, and PROAST (Slob, 2011), developed by
the Dutch National Institute for Public Health and the Environment
(RIVM). These models are also recommended by EFSA (EFSA, 2009).
In the nested approaches, the software algorithm moves from sim-
pler (few parameters) to more complex models (more parameters)
according to statistically based decision rules.

In theory, the BMDL should be lower than the ‘‘true’’ BMD in
95%, and higher in 5% of all cases, provided that the correct model
is used. The assumption of model correctness is easily ignored by
risk assessors as a possible source of error. However, considering
the variability of the experimental data, there is an obvious risk
that the use of any approach results in an inappropriate model
selection (i.e. selection of a model that deviates from the true
dose–effect relationship). This might in turn result in a misleading
calculation of the BMD and BMDL. Thus, there is a risk that esti-
mated BMDL values become higher than the true BMD far more
frequently than the expected 5%. A high frequency of ‘‘false’’ or
‘‘non-protective’’ BMDLs would be unfortunate, as the resulting
POD would then be less protective than assumed. The aim of this
study was to use simulated data to investigate how frequently
and under what circumstances non-protective BMDL values occur
with continuous data, and to quantify the possible impact on quan-
titative health risk assessment.

2. Materials and methods

The occurrence of non-protective BMDLs was investigated using
one fixed dose–effect curve with added variability. The OECD stan-
dard of four dose group was tested, i.e. control, low, medium and
high, with logarithmic dose spacing (1, 3, 10). Five dose-placement
scenarios (A–E) were tested, in these the doses were placed on

different parts of the dose–effect curve, while maintaining the 1–
3–10 dose spacing. Different dose placements and variabilities
were used to take into account that in a real toxicity study the po-
tency of the tested substance is not known beforehand and that
several similar endpoints with different sensitivity and variability
may be evaluated from the same study.

2.1. Scenarios

Five different dose placement scenarios with the same relative
logarithmic (control, 1, 3, 10) dose spacing were used, ranging from
a scenario with the three dose groups at the low end of the dose–
effect curve where the highest dose were corresponding to a dose
that caused 50% of the maximum effect (ED50) to a scenario with
the dose group at the high end where the lowest dose correspond-
ing to ED50 (Fig. 1). Simulations were performed with 5, 10, 20 and
50 animals per dose group. Both the number of dose groups and
the number of animals per group were chosen according to stan-
dard OECD Guidelines for the testing of chemicals (OECD, 2012).

2.2. Generation of dose–effect data

1200 datasets were generated for each of the five scenarios by
Monte Carlo simulation. The effect size of each individual in these
datasets was calculated with the exponential model (as described
by Moerbeek et al., 2004):

y ¼ a� ðc � ðc � 1Þ � e�bxd
Þ þ e ð1Þ

where (y) is the effect and (x) is the dose. The background effect (a)
and the shape parameter (d) were both set to 1, whereas the max-
imum effect (c) was set to 1.3. These values are realistic (Slob and
Setzer, 2013) and the same values for (a) and (c) were also used
by Slob et al. (2005). The potency parameter (b) was set to 0.231
to obtain an ED50 value of 3. The critical effect size was set to 5% in-
crease over background corresponding to a ‘‘true’’ BMD of 0.79. A
log-normally distributed residual error (e), was added to each sam-
ple to account for inter-individual variability and measurement er-
ror. The error was defined as

ðe ¼ erZÞ ð2Þ

where r is the standard deviation of the logarithm and Z is the stan-
dard normal deviate. Coefficients of variation of 5%, 10% or 15%,
were investigated, by varying r. The choice of CVs was based on
earlier studies (Slob et al., 2005), where it was noted that median
CV where around 10% in historical data analyzed with the bench-
mark dose approach.

Fig. 1. Dose placement scenarios used in the Monte Carlo generation of dose–effect data. The dose placements ranged from the lowest dose placement (dose placement A)
where the highest dose was equal to the EC50 to the highest dose placement (dose placement E) where the dose in the lowest dose group was equal to the EC50. The error bars
indicate the 95% confidence interval of the group means with 20 animals/group and a coefficient of variation (CV) of 10%. Data were also generated for 5, 10 and 50 animals/
group and CVs of 5% and 15%.
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