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a  b  s  t  r  a  c  t

Robust  computational  approaches  are  needed  to characterize  systems-level  responses  to chemical  pertur-
bations in  environmental  and  clinical  toxicology  applications.  Appropriate  characterization  of  response
presents  a methodological  challenge  when  dealing  with  diverse  phenotypic  endpoints  measured  using
in vivo  systems.  In this  article,  we  propose  an information-theoretic  method  named  Aggregate  Entropy
(AggE)  and  apply  it to scoring  multiplexed,  phenotypic  endpoints  measured  in developing  zebrafish
(Danio  rerio)  across  a broad  concentration-response  profile  for a diverse  set  of 1060  chemicals.  AggE
accurately  identified  chemicals  with  significant  morphological  effects,  including  single-endpoint  effects
and  multi-endpoint  responses  that  would  have  been  missed  by univariate  methods,  while  avoiding  puta-
tive  false-positives  that confound  traditional  methods  due to irregular  correlation  structure.  By  testing
AggE  in  a  variety  of high-dimensional  real and  simulated  datasets,  we  have  characterized  its perfor-
mance  and suggested  implementation  parameters  that can guide  its application  across  a  wide range  of
experimental  scenarios.

Published  by  Elsevier  Inc.  This  is an  open  access  article  under  the  CC  BY-NC-ND  license  (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Biological responses in whole animals are the product of
coordinated actions (or, in the case of toxic responses, dysreg-
ulation) on a systemic level. Accordingly, experimental inquiries
into basic biological processes should record multiple phenotypic
outcomes when assessing perturbations, from clinical interven-
tions such as drug treatments to environmental stressors such
as manufactured chemicals. Innovations in multiplexed endpoint
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measurement technology and exploratory omics platforms have
enabled theoretically comprehensive experiments to be conducted
[1]. However, these new, multi-endpoint data present challenges
with respect to recapitulating the relevant biological processes: (1)
The correlation structure across endpoints is irregular; (2) Individ-
ual subjects/samples vary in endpoint presentation; (3) Endpoint
measurement methods are imperfect; (4) Experimental questions
may  depend on subsets and/or recombinations of endpoints. There-
fore, analysis methods are needed that can address these challenges
while allowing for either focused, a priori analysis or data-wide,
empirical analysis.

One such area where comprehensive analysis of systemic
response is needed is environmental and clinical toxicology, where
adverse responses may  manifest anywhere from specific abnormal-
ities to collections of several endpoints that count as toxicity in the
aggregate. While there is an ever-increasing number of chemicals
in commerce and the environment, comprehensive toxicological
knowledge is lacking for all but a handful of compounds—mostly
pharmaceuticals that have progressed to expensive, late-stage clin-
ical trials. Traditional animal testing is very expensive in terms
of labor, time, and money, so high-throughput screening (HTS) is
being developed in order to more efficiently assess chemical bio-
compatibility [2]. Experimental HTS includes both in vitro assays
that probe molecular action and in vivo assays that screen for a
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variety of phenotypic endpoints that cover fundamental develop-
mental, structural, and neurological pathways [3–5].

These HTS in vivo assays provide an ideal workbench for the
development and testing of analysis methods for multiple end-
points, in that the data can be generated on a scale that permits
evaluation of an analysis method’s ability to address the four chal-
lenges presented above. In particular, experimental methods for
the zebrafish (Danio rerio), a model organism whose fundamental
developmental processes are shared across vertebrates and that
has high genetic similarity to humans, have exploded in recent
years [6,7]. Several endpoints, ranging from specific structural fea-
tures through outright mortality, have been measured, with a
trend toward higher-order assessment of multiple endpoints dur-
ing embryonic development [8].

Here, we developed an information theory-based method
named Aggregate Entropy (“AggE”) to consolidate information
into classes across endpoints, then tested this method using both
simulated and empirical zebrafish data. We  characterized the rela-
tionship amongst endpoints to identify the biological processes
underlying overall developmental assessments; used simulated
data to further validate our method across a range of sample sizes;
characterized the irregular correlation structure across endpoints
using mutual information and normalized information distance;
and used this information to reduce noise by collapsing endpoints
with similar phenotypic response patterns. Finally, we parameter-
ized AggE distributions to allow for application to new datasets
of varying dimensions from multi-endpoint experiments in any
model system.

2. Materials and methods

2.1. Empirical data

The empirical data were collected as described in Truong et al.
[5] and Noyes et al. [9]. Fig. 1 shows the experimental design and
data structure. The data include 1060 unique ToxCast chemicals
tested at six concentrations for each chemical (0 �M,  0.0064 �M,
0.064 �M,  0.64 �M,  6.4 �M and 64 �M).  There were n = 32 repli-
cates (individual embryo wells) at each concentration. At 120 h
post fertilization (hpf), 18 distinct developmental endpoints were
evaluated. The data were recorded as binary incidences.

As in Fig. 1(B) and (C), we constructed 19 different biological
states, including 18 developmental endpoints plus one NOAE (No
Observed Adverse Effect) state. Thus, for each embryo per chemical-
per concentration, data were shown as 0 and 1 for 18 binary
endpoints with NOAE recorded as 19 −

∑
(BinaryEndpoints) . All

analysis was performed using R [13].

2.2. Aggregate Entropy

The traditional Shannon’s entropy H (X) [14], in nat units, is:
Let X be a discrete random variable with a possible set of real-

izations x, thus;

H (X) = −
∑
x

p (x) logep (x)

We  define a random variable and its realizations as follows:
For each chemical C at a given concentration, let Xi repre-

sent embryo i with i = 1, . . .,  32 and Bj represent biological state j
withj = 1, . . .,  19.  In addition, Xi has realization xij with its sample
value shown in Fig. 1. The probability mass function can be written
as:

p
(
Bj|C, Xi

)
= xij

19

The Aggregate Entropy (AggE) for chemical C at a given concen-
tration is summarizing the Shannon’s entropy of all tested embryos,
which is:

AggE = −
32∑
i=1

19∑
j=1

p
(
Bj|C, Xi

)
loge

{
p
(
Bj|C, Xi

)}

2.3. Threshold determination

We first used a chi square approximation to the distribution of
AggE of each concentration as well as the distribution of the pooled
concentration [15,16]. We  estimated our chi square degree of free-
dom by using the Newton algorithm to optimize the logarithm of
the full likelihood of a chi square probability density function. Let
(AggE1, AggE2, . . .,  AggEN) be a set of AggE, thus the full likelihood
can be written as:

f (AggE1, AggE2, . . .,  AggEN) =
(

1

2
k
2 � (k)

)n

×(AggE1 ∗ . . . ∗ AggEN)
k
2 e−

AggE1+...+AggEN
2

where k is the degree of freedom of a Chi-square distribution and
N is the number of chemicals. Since the maximum likelihood esti-
mator is nonlinear, we first took the negative logarithm of the full
likelihood. After that, given a start value, we used Newton iteration
to optimize the negative logarithm of the full likelihood such that
it gave us the optimal estimate of the degree of freedom of our chi
square distribution. Our threshold, which depends on the observed
incidences of multiple measurements over many individuals, is the
critical value of a one-sided chi square test with the significance
level of 0.05.

2.4. Endpoint clustering and sensitivity analysis

We next used pairwise mutual information to characterize the
relationship among endpoints. Let E1 andE2 represent two end-
points with realization e1and e2as observed incidence counts per
chemical-per concentration, given the Shannon’s entropy defined
above, the joint Shannon’s entropy forE1 and E2 is:

H (E1, E2) = −
∑
e1

∑
e2

p (e1, e2) logep (e1, e2)

And the conditional entropy can be written as:

H (E1|E2) = −
∑
e1

∑
e2

p (e1, e2) logep (e1|e2)

With all these definitions, the mutual information (MI) is:

MI (E1, E2) =
∑
e1

∑
e2

p (e1, e2) loge
p (e1, e2)
p (e1)p (e2)

= H (E1) −  H (E1|E2)

MI  has the following, commutative, property:

MI (E1, E2) = MI (E2, E1)

We formed our clusters based on a modified three-step mea-
surement [17]. First, the pairwise mutual information between
endpoints, MI

(
Ei, Ej

)
, i, j = 1, . . .,  18, is calculated by using R

package “infotheo” [18]. Next, the mutual information matrix is
transferred to a distance measurement, called normalized infor-
mation distance [19], which is:

d
(
Ei, Ej

)
= 1 −

MI
(
Ei, Ej

)
H (Ei) + H

(
Ej

)
+ MI

(
Ei, Ej

)
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