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Abstract

This paper addresses the problem of detecting, discriminating, and reconstructing sensor faults for nonlinear systems with known model structure
but uncertainty in the parameters of the process. The convenience of the proposed technique lies in the fact that historical operational data and/or a
priori fault information is not required to achieve accurate fault reconstruction except for fixed, short intervals. The overall fault diagnosis algorithm
is composed of a series of nonlinear estimators, which estimates parameter and a fault isolation and identification filter. Parameter estimation and
fault reconstruction cannot be performed accurately since faults and parametric uncertainty interact with each other. Therefore, these two tasks
are performed at different time scales, where the fault diagnosis takes place at a more frequent rate than the parameter estimation. It is shown that
the fault can be reconstructed under some realistic assumptions and the performance of the proposed methodology is evaluated on a simulated
chemical process exhibiting nonlinear dynamic behavior.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

There is an impetus to reduce downtime, increase safety,
product quality, minimize impact on the environment, and
reduce manufacturing costs in modern chemical plants through
early and accurate fault detection and diagnosis[1,2]. The need
for accurately monitoring the process variables and interpret-
ing their variations increases rapidly with the increase in level
of instrumentation in chemical plants. These variations although
mostly due to change in operating conditions can also be directly
linked to faults. Gathering information about the state of a system
and processing the data for detecting, isolating, and identifying
abnormal readings are important tasks of a fault diagnosis sys-
tem[3], where the individual goals are defined as:

• Fault detection: a Boolean decision about the existence of
faults in a system.
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• Fault isolation: determination of the location of a fault, e.g.,
which sensor or actuator is not operating within normal limits.

• Fault identification: estimation of the size and type of a fault.

Various techniques exist for performing fault diagnosis[4].
A major portion of these techniques are based upon data from
past operations in which statistical methods are used to compare
the current operating data to earlier conditions of the process
where the state of the process was known. Although these tech-
niques are easier to implement, they have shortcoming that the
analysis relies on static models, which assumes that the process
operates at a predefined steady-state condition. This is often
not the case as the process may undergo throughput changes or
exhibit highly nonlinear behavior[5]. Moreover, these methods
cannot estimate the shape and size of the fault accurately. Uti-
lizing first-principles-based models into the procedure allows
for accurate diagnosis even when operating conditions have
changed, while the online estimation of model parameters takes
care of plant-model mismatch. The parameter estimation is per-
formed using an augmented nonlinear observer[6,15], which
is principally different from often used Extended Kalman filter
or Extended Luenberger observer. The proposed fault diagnosis
technique itself computes residuals (i.e., the mismatch between

0304-3894/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jhazmat.2005.07.037



2 S. Rajaraman et al. / Journal of Hazardous Materials 130 (2006) 1–8

the measured output and estimated output using the model) for
fault detection[3] and appropriate filters are derived to achieve
fault isolation and identification as well. Since it is not possible
to simultaneously perform parameter estimation and fault detec-
tion, due to the interactions of these two tasks, an approach where
these computations are taking place at different time scales is
implemented. It is shown that fault detection, isolation, and iden-
tification for nonlinear systems containing uncertain parameters
can be performed under realistic assumptions with the presented
approach.

2. Fault diagnosis for LTI systems

Consider a linear, time-invariant system with no input:

ẋ = Ax

y = Cx + fs
(1)

wherex ∈ Rn is a vector of state variables andy ∈ Rm is a vector
of output variables,n the number of states, andm refers to the
number of output variables.A andC are matrices of appropriate
dimensions andfs is the sensor fault of unknown nature with
the same dimensions as the output. Assuming the above sys-
tem is observable, a Luenberger observer for the system can be
designed.

˙̂x = Ax̂ + L(y − ŷ)

ŷ = Cx̂
(2)

whereL is the observer gain chosen to make the closed loop
observer stable and achieve a desired observer dynamics. A
residual[3] is defined as:

r(t) =
∫ t

0
Q(t − τ)(y(τ) − ŷ(τ)) dτ (3)

which represents the difference between the estimated output
and the actual output passed through a filterQ(t). Taking a
Laplace transform of Eqs.(1)–(3) results in:

r(s) = Q(s)[I − C(sI − (A − LC))−1L]fs(s) (4)

whereQ(t) is chosen such thatQ(s) is aRH∞-matrix [7]. It can
be shown that

(1) r(t) = 0 if fs(t) = 0.

(2) r(t) �= 0 if fs(t) �= 0.

indicating that the value ofr(t) predicts the existence of a fault
in the system[7].

In addition, if one uses the dedicated observer scheme as
shown for a system with three outputs inFig. 1, then the fault
detection system can also discriminate among various fault
sources:

(3) ri(t) = 0 if fs,i(t) = 0, i = 1, 2, 3, . . . , m.

(4) ri(t) �= 0 if fs,i(t) �= 0, i = 1, 2, 3, . . . , m.

wherei represents theith measurement. A fault detection system
that satisfies all of the above conditions is called as a fault detec-

tion and isolation filter (FDIF). A fault detection and isolation
filter becomes a fault identification filter (FIDF) if additionally
the following condition is satisfied[8]:

(5) lim
t→∞(ri(t) − fs,i(t)) = 0, i = 1, 2, 3, . . . , m.

In order to meet the above conditions, the following restric-
tions on the choice ofQ(s) are imposed:

(a) Q(s) �= 0, ∀s ∈ C.

(b) Q(s) = [I − C(sI − (A − LC))−1L]
−1 =

C(sI − A)−1L + I.

Linear, observer-based fault detection, isolation, and identi-
fication schemes work well in the event when accurate funda-
mental model exists for the process over the whole operating
region and if appropriate choices are made forL andQ.

3. Robust fault detection, isolation, and identification

3.1. Problem formulation

Consider a nonlinear system with possibly multiple outputs
of the following form:

ẋ = f (x, θ)

y = h(x, θ) + fs
(5)

wherex ∈ Rn is a vector of state variables andy ∈ Rm is a vec-
tor of output variables. It is assumed thatf(x, θ) is an infinitely
differentiable vector field inRn andh(x, θ) is an infinitely dif-
ferential vector field inRm. Let θ ∈ Rk be a parameter vector
assumed to be constant with time but a priori uncertain andfs is
the sensor fault of unknown nature with the same dimensions as
the output. The goal of this paper is to estimate the state vector
without accurate knowledge of the parameter values describing
the process model and under the influence of output disturbances
such that lim

t→∞(x − x̂) = 0, where ˆx is the estimate of the state

vector,x and to design a set of filtersQ(t) so that the residuals,
given by the expressionr(t) = ∫ t

0 Q(t − τ)(y(τ) − ŷ(τ)) dτ have
all the five properties discussed in Section2.

The main challenge in this research is to overcome the effect
of sensor faults and plant-model mismatch on the fault identifica-
tion. In order to perform accurate state and parameter estimation,
it is required to have reliable measurements, while at the same
time, an accurate model of the process is desired to reconstruct
the fault. This will be taken into account by performing the
parameter estimation and the fault detection at different time
scales. Whenever the parameters are estimated, it is assumed
that there is either no fault or fault previously identified remains
constant with time, while the values of the parameters are not
adjusted during each individual fault detection. A variety of
different techniques exist for designing nonlinear closed-loop
observers[9–13]. However, since the class of problems under
investigation includes parametric uncertainty it would be natural
to address these issues through a parametric approach instead of
the often used extended Kalman filter or extended Luenberger
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