
Kernel PLS-based GLRT method for fault detection of chemical
processes

Chiranjivi Botre a, Majdi Mansouri b, Mohamed Nounou c, *, Hazem Nounou b,
M. Nazmul Karim a

a Chemical Engineering Department, Texas A&M University, College Station, TX 77843, USA
b Electrical and Computer Engineering Program, Texas A&M University at Qatar, Doha, Qatar
c Chemical Engineering Program, Texas A&M University at QATAR, Doha, Qatar

a r t i c l e i n f o

Article history:
Received 7 March 2016
Accepted 18 May 2016
Available online 20 May 2016

Keywords:
Kernel partial least square
Generalized likelihood ratio test
Continuously stirred tank reactor
Fault detection

a b s t r a c t

Fault detection is essential for proper and safe operation of various chemical processes, and it has
recently become even more important than ever before. In this paper, we extended our previous work
(Mansouri et al. (2016)), which addresses the problem of fault detection of chemical systems using kernel
principal component analysis (KPCA)-based generalized likelihood ratio test (GLRT), to widen its
applicability for processes represented by input-output models. Specifically, hypothesis testing fault
detection technique that are based on linear and nonlinear partial least squares (PLS) models are
developed. For nonlinear PLS models, a kernel PLS (KPLS) modeling framework is utilized. KPLS has been
widely used to model various nonlinear processes, such as distillation columns and reactors. Thus, in the
current work, a KPLS-based GLRT fault detection method is developed, in which KPLS is used as a
modeling framework and the KPLS model generated residuals are evaluated using a GLRT statistic. The
fault detection performance of the developed KPLS-based GLRT method is illustrated through a simu-
lated example representing a continuously stirred tank reactor (CSTR). The simulation results show that
the KPLS-based GLRT method outperforms its linear PLS-based version, and that both of the afore-
mentioned techniques provide clear advantages over the conventional linear and nonlinear PLS based
statistics, i.e., T2 and Q.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Monitoring of the chemical processes is important for the safety
of the plant and to ensure product quality is maintained. Process
monitoring steps consists of detecting the fault in the system and
taking corrective action against it (Hwang et al. (2010); Isermann
(2006); Qin (2012); Venkatasubramanian et al. (2003a); Qingsong
(2004); Venkatasubramanian et al. (2003b)).

Multivariate statistic methods are very effective for fault
detection and diagnosis in chemical industry Hwang et al. (2010);
Qin (2012). The partial least square (PLS) and principle compo-
nent analysis (PCA) are two basic types of multivariate methods.
PCA is among the most popular statistical methods used for
modeling and faults detection problems (Yu (2011); Herve and
Lynne (2010); Wang and Chen (2004); Diana and Tommasi

(2002)), however, it provides a linear combinations of variables
that demonstrate major trends in data set. In our previous work
(Mansouri et al. (2016)), we have successfully applied kernel PCA
(KPCA) based generalized likelihood ratio test (GLRT) for nonlinear
fault detection of chemical system. However, KPCA is an input-
space model and cannot take outcome measures into account and
most chemical processes or many of them, such as distillation
columns, are usually described by input-output models. PLS is an
input output model and could be used to detect fault in both pro-
cess and variables. It can also be used as a linear regression tool to
predict the output variables form process variables. Hoteling T2 and
Q statistics are common statistical fault detection (FD) charts that
are applied with PLS for process monitoring. However, the use of
the conventional PLS (Lodhi and Yamanishi (2011)) through its two
charts hoteling T2 and Q could lead to missed detection and high
false alarm rate.

However, chemical and refinery processes are complex and
most of the variables are non-linear in nature and the fault* Corresponding author.
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detection of this processes by linear PLS would lead tomanymissed
diagnosis and non-reliable results. In literature, several nonlinear
version of PLS are developed, a nonlinear iterative partial least
square (NIPALS) algorithm is used to model PLS which was devel-
oped in Wold (1992). The authors in (Malthouse et al. (1997)) have
presented a complicated artificial neural network to model
nonlinear PLS. While, the authors in (Wold et al. (1984)) have
proposed to use a quadratic function to relate scores in PLS algo-
rithm. Thus, in this paper, we propose to use the kernel partial least
square (KPLS) as a modeling framework. The KPLS is among the
most well-known nonlinear statistical method (Rosipal and Trejo
(2001)), it is the method for performing a nonlinear form of PLS.
It is an input output model, which reduces the dimensionality of
process variable and variables to extract scores and principle
components and could be used to detect fault in both process and
variables. The KPLS gives good general properties of nonlinear PLS
by selecting appropriate kernel function (Rosipal and Trejo (2001)),
radial basis function, polynomial function and sigmoid function are
three common kernel function used. KPLS can also be used as a
regression tool to predict the product variables from nonlinear
process variables. KPLS approach works similar to PLS, it reduces
the dimensionality of nonlinear process variables and variables by
projecting into space with less dimensionality.

Hence, the objective of this paper, is to address the problem of
nonlinear fault detection so that the data are first modeled using
the KPLS algorithm and then the faults are detected using gener-
alized likelihood ratio test (GLRT). The KPLS is used to create the
model and find nonlinear combinations of parameters which
describe the major trends in a data set and GLRT is used to detect
the faults and both are utilized to improve faults detection process.
An alternative approach for fault detection is to use hypothesis
testing based techniques, such the GLRT. The GLRT has been shown
to provide good detection abilities for specified false alarm rates
(Gustafsson (1996); Willsky et al. (1980); Dawdle et al. (1982)).

The fault detection performances of the KPLS-based GLRT is
illustrated through a simulated continuously stirred tank reactor
(CSTR) data. The results demonstrate the effectiveness of the KPLS-
based GLRT method over the linear PLS-based GLRT and conven-
tional KPLS methods for detection of single as well as multiple
sensor faults and assessed using the false alarms and missed
detection rates.

The rest of the paper is organized as the following. In Section 2,
an introduction to PLS and KPLS methods is given, followed by
descriptions of the two main detection indices, T2 and Q, which are
generally used with KPLS for fault detection. Then, the GLRT which
is utilized in composite hypothesis testing is discussed in Section 3.
After that, the KPLS-based GLRT method used for fault detection
which integrates KPLS modeling and GLR statistical testing, is
presented in Section 4. Next, in Section 5, the KPLS-based GLRT
performance is studied through a simulated continuously stirred
tank reactor data. At the end, the conclusions are presented in
Section 6.

2. Partial least square and kernel partial least square
methods description

First, in Section 2.1, we present the linear partial least square.

2.1. Partial least square (PLS) method

Let X2RN�M denotes an input datamatrix havingN observations
and M variables, and Y2RN�L an output data matrix consists of L
response variables. PLS is an input output model and can decom-
pose both X and Y matrices and detect the fault in both X and Y
variables, it is formally determined by two sets of linear equations:

the inner model (the relations between the latent variables) and
the outer model (the relations linking the latent variables and their
associated observed variables) Geladi and Kowalski (1986a). The X
and Y matrices are linked by score vectors (T and U) and principle
components (P and U). The PLS model is given by Kourti and
MacGregor (1995):

X ¼ TPT þ E ¼
XI
i¼1

tip
t
i þ E ¼ bX þ E (1)

X ¼ UQT þ F ¼
XI
j¼1

ujq
t
j þ F ¼ bY þ F; (2)

where bX and bY represent modeling matrices of X and Y succes-
sively, E2RN�M and F2RN�L are the residuals of X and Y respec-
tively, T ¼ [t1,t2/tI]2ℝM�I is the resulting input score matrix,
U ¼ [u1,u2/uJ]2ℝN�J is the output score matrix,
P ¼ ½pt1; pt2/ptI �2ℝM�I and Q ¼ ½qt1; qt2/qtJ �2RL�J represent the
loading matrices, successively. The two matrices X and Y are
generally pre-treated by centering and scaling to have mean zero
and variance unity prior to PLS modeling.

The scores and the principle components are calculated from
the NIPALS algorithm (presented in Algorithm 1). Each iteration
calculates a column matrix of t, u, p, q and the residuals obtained
from previous iteration is used as input to the next iteration, which
makes sure that all scores and principle components are extracted
from X and Y matrices. The NIPALS algorithm is presented in
Algorithm 1.

The variability of data is extracted from X and Y matrices to get

Algorithm 1
NIPALS algorithm.

Input: N � M input data matrix X and N � L output data matrix Y
Output: Input score matrix T ¼ [t1,t2/tI], Output score matrix

U ¼ [u1,u2/uJ].
� Initialize output score as:

u ¼ yi (3)

� Weights are given as:

w ¼ uTX
.
uTu (4)

� Normalize weight w:
w ¼ w=jjwjj (5)

� Score vector of X:

t ¼ Xw
.
wTw (6)

� Loading vector of X:

p ¼ XtT
.
tT t (7)

� Loading vector of Y:

q ¼ YtT
.
tT t (8)

� Score vector of Y:

u ¼ YqT
.
qTq (9)

� Rescale weights, loading vectors and scores:
p ¼ p

normðpÞ, w ¼ w � norm(p), t ¼ t � norm(p);

� Deflate matrices X and Y as:

X ¼ X � tpT (10)

Y ¼ Y � tqT (11)

Repeat step 2 to 8, to get next latent variables, the resulting input score
matrices T ¼ [t1,t2/tm]2ℝm�N and output score matrix U ¼ [u1,u2/um]
2ℝm�N.
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