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a b s t r a c t

A subsea blowout preventer (BOP) stack is used to seal, control and monitor oil and gas wells. It can be
regarded as a serieseparallel system consisting of several subsystems. This paper develops the dynamic
Bayesian network (DBN) of a parallel system with n components, taking account of common cause
failures and imperfect coverage. Multiple error shock model is used to model common cause failures.
Based on the proposed generic model, DBNs of the two commonly used stack types, namely the con-
ventional BOP and modern BOP are developed. In order to evaluate the effects of the failure rates and
coverage factor on the reliability and availability of the stacks, sensitivity analysis is performed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A blowout preventer (BOP) is a specialized mechanical device,
usually installed redundantly in stacks, used to seal, control and
monitor oil and gas wells. It is developed to deal with extreme
erratic pressures and uncontrolled flow gushing from a well
reservoir during drilling. BOPs play an important role in the safety
of crew, rig and environment, and they are critical to the moni-
toring and maintenance of well integrity. Once the BOP fails, kicks
or blowout in the process of drilling will lead to serious conse-
quences. For example, the semisubmersible drilling platform
Deepwater Horizon in the Gulf of Mexico exploded and sank on
April 20, 2010. This tragedy not only caused huge property losses
and casualties, but also brought irreparable disaster to the
ecological environment of the Gulf of Mexico (Skogdalen et al.,
2011). One important cause of this accident is that the subsea
BOP fails to function. Hence, reliability research of subsea BOP is of
significance and it attracts more and more attentions recently.

Several methods have been proposed for reliability analysis of
subsea BOP system. Fowler and Roche (1994) use failure modes and
effects analysis (FMEA) and fault tree analysis (FTA) techniques for
reliability analysis of a BOP and a hydraulic control system.

Historical data about subsea BOP failures and malfunctions are
collected and estimated by using the FTA method (Holand and
Rausand, 1987; Holand and Awan, 2012). But, the two methods
are only suitable for non-repair systems and lack of time element is
their limitation (Sadou and Demmou, 2009). Besides, FMEA tech-
nique cannot differentiate situation of common failures or severe
failure caused by compound failures (Globe, 2010). Owing to their
flexibility, Markov methods are used for performance evaluation of
subsea BOP stack configuration and mounting types for control
pods (Cai et al., 2012). Due to the exponential growth of the state
space with the number of components, Markov method is faced
with state explosion problem (Boudali and Dugan, 2005). With
Bayesian network (BN), there is no longer such a constraint since
the number of parameters within the conditional probabilities ta-
ble is considerable lower compared to a Markov model (Weber
et al., 2012).

Recently, BNs have been popular for reliability and risk evalua-
tion as a robust and viable alternative to most traditional methods
such as fault tree, reliability block diagrams and so on (Khakzad
et al., 2013). Martins and Maturana (2013) present a method
based on BN for analyzing human reliability and apply this meth-
odology to the operation of an oil tanker, focusing on the risk of
collision accidents. Li et al. (2012) develop a fuzzy BN approach to
improve the quantification of organizational influences in human
reliability analysis frameworks. Morales-Napoles and Steenbergen
(2014) have presented the potential of Hybrid BNs for modeling* Corresponding author.
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complex data such as the one generated by the Weigh-in-Motion
system in the Netherlands. Doguc and Ramirez-Marquez (2012)
develop a newmethod for estimating grid service reliability, which
does not need prior knowledge about the grid system structure
unlike the previous studies. Daemi et al. (2012) use BN for reliability
assessment of composite power systems with emphasis on the
importance of system components.

If a BN is involved with temporal factors, it is a dynamic
network. Static BN can be extended into dynamic Bayesian network
(DBN) by introducing relevant temporal dependencies between
representations of the static network at different times, which al-
lows modeling the dynamic behavior of the systems (Gal�an et al.,
2002). Thus, DBN is more appropriate for monitoring and predict-
ing values of random variables, and capable of representing the
system states at any time with respect to BN (Weber and Jouffe,
2003). Several DBN models have been proposed for assessing reli-
ability of technical systems. Portinale et al. (2010) present an
approach to reliability modeling and analysis based on the auto-
matic conversion of the dynamic fault tree into DBN, which is
implemented in a software tool called RADYBAN (Montani et al.,
2008). Cai et al. (2013) present a quantitative reliability and avail-
ability evaluation method for subsea BOP system by translating
fault tree into DBN directly, taking account of imperfect repair.
Boudali and Dugan (2005) propose a new reliability and analysis
framework based on the BN formalism and the method is to
investigate timed BNs and find a suitable reliability framework for
dynamic systems.

Subsea BOP stack is composed of annular BOPs, ram BOPs, LMRP
connector and wellhead connector. In order to improve the reli-
ability of the BOP sack, several annular and ram BOPs are used for
redundancy. Therefore, it can be regarded as a serieseparallel
system. This paper presents a method to develop the DBNs for
reliability analysis of the subsea BOP stack. With common cause
failures and imperfect coverage taken into account, two commonly
used types, conventional BOP stack and modern BOP stack, are
discussed. Sensitivity analysis is performed to research the in-
fluences of failure rates and imperfect coverage on system reli-
ability and availability. The paper is structured as follows. Section 2
describes the subsea BOP stack in detail. Section 3 presents the
method to develop DBNs of subsea BOP stacks. Section 4 covers the
analytical results and discussions. Section 5 summarizes the paper.

2. Description of subsea BOP stack

BOPs come in two basic types, ram and annular. Both are often
used together in drilling rig BOP stacks, typically with at least one
annular BOP along with several ram BOPs. An annular-type BOP
can close around the drill string or casing. Drill pipe including the
larger-diameter tool joints (threaded connectors) can be “strip-
ped” (i.e., moved vertically while pressure is contained below)
through an annular preventer by careful control of the hydraulic
closing pressure. Annular BOPs are also effective at maintaining a
seal around the drill pipe even as it rotates during drilling. Regu-
lations typically require that an annular preventer be able to
completely close a wellbore, but annular preventers are generally
not as effective as ram preventers in maintaining a seal on an open
hole. Annular BOPs are typically located at the top of a BOP stack,
with one or two annular preventers positioned above a series of
several ram preventers. A ram-type BOP is similar in operation to a
gate valve, but uses a pair of opposing steel plungers, rams. The
rams extend toward the center of the wellbore to restrict flow or
retract open in order to permit flow. The inner and top faces of the
rams are fitted with packers that press against each other, against
the wellbore, and around tubing running through the wellbore.
Outlets at the sides of the BOP housing are used for connection to

choke and kill lines or valves. Rams are of four common types:
pipe, blind, shear, and blind shear. Pipe rams close around a drill
pipe, restricting flow in the annulus (ring-shaped space between
concentric objects) between the outside of the drill pipe and the
wellbore, but do not obstruct flow within the drill pipe. Variable-
bore pipe rams can accommodate tubing in a wider range of
outside diameters than standard pipe rams, but typically with
some loss of pressure capacity and longevity. Blind rams (also
known as sealing rams), which have no openings for tubing, can
close off the well when the well does not contain a drill string or
other tubing, and seal it. Shear rams cut through the drill string or
casing with hardened steel shears. Blind shear rams (also known
as shear seal rams, or sealing shear rams) are intended to seal a
wellbore, even when the bore is occupied by a drill string, by
cutting through the drill string as the rams close off the well. The
upper portion of the severed drill string is freed from the ram,
while the lower portion may be crimped and the “fish tail”
captured to hang the drill string off the BOP. Two hydraulic con-
nectors are used to connect the BOP stack with the lower marine
riser package (LMRP) and wellhead. LMRP connector joins the
LMRP to the top of the lower BOP stack, while wellhead connector
joins the stack to the subsea wellhead.

Fig. 1 demonstrates typical BOP configurations for a conven-
tional and a modern BOP, respectively. However, these are repre-
sentative sketches of BOPs as configurationmay vary from rig to rig.
A modern subsea BOP typically has six ram preventers, while a
conventional subsea BOP has four ram preventers. As shown in
Fig. 1, a conventional BOP configuration has two annular pre-
venters, three pipe ram preventers, one blind shear ram preventer,
one LMRP connector and wellhead connector. As a modern BOP
configuration has two annular preventers, four pipe ram pre-
venters, two blind shear ram preventers, one LMRP connector and
wellhead connector. Compared with the conventional configura-
tion, the modern BOP has one more pipe ram preventer and one
more blind shear ram preventer.

According to the configuration, a BOP stack can be regarded as
a serieseparallel system composed of five subsystems, which is
shown in Fig. 2. For conventional BOP, annular BOP subsystem is a
parallel subsystem with two components and pipe ram BOP
subsystem is a parallel subsystem with three components. For
modern BOP, annular BOP subsystem and blind shear ram BOP
subsystem are parallel subsystems with two components and
pipe ram BOP subsystem is a parallel subsystem with four
components.

3. Dynamic Bayesian network modeling

3.1. Dynamic Bayesian network

BNs are probabilistic models based on directed acyclic graphs
which are used for representing and reasoning with uncertain
knowledge (Ramírez and Utne, 2015). A BN is made up of a set of
nodes representing the system variables and directed arcs repre-
senting the dependencies or influence among the variables. In BNs,
a variable is defined over several mutually exclusive states and a
probability is associated to each state. The probabilistic de-
pendences are quantified by a conditional probability table for each
node (Arsene et al., 2011). Each conditional probability table con-
tains the probability of a node, given any possible combination of its
parent nodes. Without parent nodes, root nodes only have prior
probabilities. The nodes ðX1; :::;XNÞ in the network are labeled by
related random variables. Assuming PaðXiÞ is the parent node of Xi
in the model, the conditional probability distribution of Xi is
denoted by PðXijPaðXiÞÞ.The joint probability distribution
PðX1; :::;XNÞ can be written as Eq. (1).
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