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a b s t r a c t

A synthesis of previous literature is used to derive a model of an in-service direct-spring pressure relief
valve. The model couples low-order rigid body mechanics for the valve to one-dimensional gas dynamics
within the pipe. Detailed laboratory experiments are also presented for three different commercially
available values, for varying mass flow rates and length of inlet pipe. In each case, violent oscillation is
found to occur beyond a critical pipe length, which may be triggered either on valve opening or closing.
The test results compare favorably to the simulations using the model. In particular, the model reveals
that the mechanism of instability is a Hopf bifurcation (flutter instability) involving the fundamental,
quarter-wave pipe mode. Furthermore, the concept of the effective area of the valve as a function of valve
lift is shown to be useful in explaining sudden jumps observed in the test data. It is argued that these
instabilities are not alleviated by the 3% inlet line loss criterion that has recently been proposed as an
industry standard.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This paper summarizes and extends recent scientific in-
vestigations into the mechanisms of instability in pressure relief
valves (PRVs) and considers their implications for practical opera-
tion. The overall aim is to develop a new comprehensive under-
standing of the issues that affect valve stability in operation, in
order to influence a new set of design guidelines for their operation
and manufacture. In particular we shall combine theoretical model
studies with tests of fully instrumented valves within representa-
tive pipe geometries. This paper will focus specifically on direct
spring-loaded PRVs in gas service, particularly considering the
combined effect of the valve dynamics with acoustic pressure
waves within its inlet pipe.

A considerable amount of scientific literature has been pub-
lished on the description and analysis of valve systems. Green and
Woods (1973) provided the first comprehensive discussion of the
possible causes of valve instabilities, suggesting that they can be
induced as a result of five different effects: the interaction between

the poppet and other elements, flow transition from laminar to
turbulent during opening and closing, a negative restoring force,
hysteresis of the fluid force, and fluctuating supply pressure. This
paper shall focus on the first of these, specifically instability due to
interaction between the valve and the inlet pipe (although, as we
shall see, this can also be interpreted as an effective negative
restoring force on the valve provided by an acoustic wave). In-
stabilities due to the other four effects identified by Green and
Woods have been analyzed by a number of other authors (Kasai,
1968; McCloy & McGuigan, 1964; Madea, 1970a,b; Nayfeh &
Bouguerra, 1990; Vaughan, Johnston, & Edge, 1992; Moussou
et al., 2010; Beune, 2009; Song, Park, & Park, 2011). Conventional
PRVs subject to built-up back pressure have also been widely
investigated (Francis & Betts, 1998; Chabane, Plumejault, Pierrat,
Couzinet, & Bayart, 2009; Moussou et al., 2010). In this paper we
do not consider effects of downstream piping. Oscillations in other
valve systems have also been studied, e.g. in plug valves (D'Netto &
Weaver, 1987), compressor valves (Habing & Peters, 2006), ball
valves (Nayfeh& Bouguerra, 1990), pilot-operated two-stage valves
(Botros, Dunn, & Hrycyk, 1997; Zung & Perng, 2002; Ye & Chen,
2009) and control valves (Misra, Behdinan, & Cleghorn, 2002).
Again, such studies go beyond the scope of the present work.* Corresponding author.
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The first serious discussion of self-excited instabilities of poppet
valves emerged in the 1960s. Funk (1964) discussed the influence of
valve chamber volume and pipe length within a hydraulic circuit on
the stability of a poppet valve. He found that such valves are in-
clined to become unstable at a critical frequency that coincides
with the fundamental vibratory mode of the pipeline. Moreover,
the severity of the instability increases with the length of the pipe.
Kasai (1968) developed this analysis by deriving equations of mo-
tion for such a poppet valve and inlet piping system. Based on linear
stability analysis, he established formulas for predicting instability
in the valve. The results were shown to be in broad agreement with
experiments. A similar configuration was studied by Thomann
(1976) who found that the valve motion can couple to the acous-
tic oscillation of the pipe, leading to amplified oscillation of the
system. He also developed analytical criteria for the loss of stability,
finding good agreement with experiments. Later, MacLeod (1985)
developed a model that includes gas dynamical issues such as
choked flowcapable of predicting the region of stable operation of a
simple spring loaded PRV mounted directly onto a gas-filled pres-
sure vessel.

In the 1990s Hayashi (1995) and Hayashi, Hayase, and Kurahashi
(1997) carried out detailed linear and global stability analyses of a
poppet valve circuit and showed representative examples of ’soft’
and ’hard’ self-excited vibration. They revealed that for the same
conditions several pipe vibration modes can become simulta-
neously unstable, with the number of unstable modes increasing
with pipe length. These results agree with those obtained by Botros
et al. (1997) who find that for higher values of the pipe length two
modes evolve in the system while for lower values of the pipe
length the vibration is primarily in the fundamental, quarter-wave
mode. They also found that maximum amplitude occurs when the
oscillation frequency coincides with the quarter-wave natural fre-
quency; for lower and higher values of the pipe length the ampli-
tude decreases.

In early work by two of us (Licsko, Champneys, & H}os, 2009),
we used nonlinear dynamical systems methods to analyze a low-
order system of ordinary differential equations describing a
simplified version of the set up used by Kasai (1968) and Hayashi
et al. (1997), ignoring the effect of the pipe. Here we showed that
upon reduction of the inlet flow rate, loss of stability is due to a
Hopf bifurcation (also known as a flutter instability in aeroelastics)
is initiated by a so-called self-excited oscillation; a dynamic
instability which is present in the system even in the absence of
explicit external excitation. The system was further investigated
by H}os and Champneys (2012), where we elucidated the nature of
grazing bifurcations in the system that underlie the onset of
impacting motion between the valve and its seat, and performed
detailed two-parameter continuation. At the same time, Bazs�o
and H}os (2013) report experimental results in a hydraulic sys-
tem that showed qualitative agreement to the nonlinear dy-
namics predicted by Licsko et al. (2009). That paper also
presented a preliminary stability map that shows the frequency of
the evolving self-excited vibration along the boundary of loss of
stability, again for hydraulic application. Furthermore, Bazs�o,
Champneys, and H}os (2014b) provide a detailed mathematical
derivation of the model studied here in section 2, which extends
the reduced-order model of Licsko et al. (2009) to include the
more realistic effects of a downstream inlet pipe. The present
paper though is the first to compare that model with experi-
mental data and to consider the practical application of the
findings of the model. It should be noted that our model and
conclusions bear similarities with that used in the study by Izuchi
(2010). Our work though has far more detailed test data and we
have also identified the key parameters and mechanisms
affecting instability.

In parallel to the scientific literature, there has been industry-
funded studies into the safe operation of pressure relief systems.
For example, the American Institute of Chemical Engineering
(AIChE) founded in 1976 the Design Institute for Emergency Relief
Systems (DIERS) whose twin aims are the reduce pressure pro-
ducing accidents and to develop new techniques to improve the
design of relief systems. Meanwhile, the American Petroleum
Institute (API) have funded their own internal program into the
causes of PRV instability. Many of their findings are included in the
draft 6th edition of API standard RP520 Part II. In particular, the
standard is careful to point out the difference between valves un-
dergoing three different types of behaviour, all of which have
previously been referred to as instability. These are

1. cycling,
2. valve flutter, and
3. valve chatter.

Here, cycling refers to a valve that opens and closes multiple
times during a pressure-relief event. Typically this behaviour is of
low frequency (<1Hz) and can be caused either by valve oversizing
or inlet pressure loss causing the pressure to drop transiently, and
the valve to shut. As pressure builds up again, the valve re-opens,
with this chain of events happening repeatedly. In contrast, flutter
is a high-frequency self-excited periodic oscillation of the valve
(typically >10Hz) that does not result in the valve completely
closing off. Finally, chatter is a more violent form of rapid oscillatory
motion that involves the valve repeatedly impacting with its seat at
high frequency. The API RP520 standard is less clear on the precise
causes of flutter or chattering instability mechanisms, but resonant
coupling between the valve and its pipework, or instabilities being
triggered from periodically shed vortices have been postulated as
possible causes of flutter.

One of the aims of this paper is to explain these three phe-
nomena in terms used in the recent scientific literature. In partic-
ular, we shall show that the onset of flutter can be regarded as a
Hopf bifurcation (which is also commonly known as flutter in the
aeroelastic research community). As shown in detail in simplified
models (Licsko et al., 2009; H}os & Champneys, 2012), chatter often
arises as the amplitude of the limit cycle resulting from a Hopf
bifurcation grows to the extent that the valve body touches the
valve seat. This causes a so-called grazing bifurcation that causes
the onset of more violent, repeatedly impacting motion. Cycling
behaviour is, as we have mentioned, better understood industrially
and is not the subject of this paper per se. Nevertheless we do show
in Section 4.3 below that our mathematical model is capable of
reproducing this behaviour.

To avoid cycling, the API standard proposes that the line pres-
sure loss should be less than 3% of the set pressure. However, as we
shall see, this is not sufficient to prevent self-excited flutter or
chatter instabilities in the valves we have tested.

The remainder of this paper is outlined as follows. First, Section
2 presents a mathematical model that combines the rigid-body
dynamics of a direct spring valve with 1D gas dynamics within
the pipe. The valve model is sufficiently complex to consider real-
istic valve design parameters such as set pressure and a prescribed
relation between the effective valve area and the valve's lift. Then,
in Section 3 we present a detailed validation of the model against
test data performed on three different commercially available
valves. In each case we run a pressure run-up and run-down event
for for several different mass flow rates and inlet pipe lengths. A
detailed comparison between model and data is presented, and
close agreement is found for both the nature of the instabilities
observed and for the flow rates and pipe lengths for which insta-
bility is triggered. This leads to a detailed discussion in Section 4
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