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30Antimitotic agents are potential compounds for the treatment of breast cancer. Cytotoxicity is one of the
31parameters required for anticancer activity. A validated comparative molecular modeling study was per-
32formed on a set of phenylindole derivatives through R-group QSAR (RQSAR), regression-based and linear
33discriminant analysis (LDA)-based 2D QSAR studies and kernel-based partial least square (KPLS) analyses
34as well as CoMSIA 3D-QSAR study. Antiproliferative activities against two breast cancer cell lines
35(MDA-MB-231 and MCF7) were separately used as dependent variables. The RQSAR analysis highlighted
36different E-state indices and pharmacophoric requirements of important substitutions. The best 2D-QSAR
37model is established on the basis of three machine learning tools – MLR, SVM and ANN. The 2D-QSAR
38models depicted importance of different structural, physicochemical and topological descriptors. While
39RQSAR analyses demonstrated the fingerprint requirements of various substitutions, the KPLS analyses
40showed these requirements for the entire molecule. The CoMSIA model further refines these interpreta-
41tions and reveals how subtle variations in these structures may influence biological activities.
42Observations of different modeling techniques complied with each other. The current QSAR study may
43be used to design potential antimitotic agents. It also demonstrates the utilities of different molecular
44modeling tools to elucidate the SAR.
45� 2015 Published by Elsevier Ltd.
46

47

4849 1. Introduction

50 Mitosis involves a series of mechanical events that produce two
51 new nuclei containing identical copies of DNA in cell division.
52 Because of the crucial role of the mitotic spindle in mitosis, the
53 spindle fiber is a valuable target in cancer therapy for decades
54 (Wood et al., 2001). In eukaryotic cells, microtubules play vital
55 roles in a variety of fundamental cellular processes including mito-
56 sis, formation and maintenance of cell shape, regulation of motil-
57 ity, cell signaling and secretion as well as the separation of
58 duplicated chromosomes during the cell division and intracellular
59 transport (Amos, 2004; Downing and Nogales, 1998a; Honore
60 et al., 2005; Pellegrini and Budman, 2005; Walczak, 2000).
61 Microtubules are cytoskeletal filaments, consist of a- and
62 b-tubulin heterodimers (Downing and Nogales, 1998b), involving
63 dynamic polymerization as well as depolymerization transitions
64 by the reversible addition of tubulin dimers at their end.

65Interference of this equilibrium process blocks proper microtubu-
66lar function and ultimately leads to the cell death (Silvestri,
672013). Therefore, antimitotic agents become promising weapons
68for development of new anticancer drugs (Jordan and Wilson,
692004). Antimitotic agents help in mitotic arrest at the level of chro-
70mosomes, nuclear membrane and the mitotic spindle that result in
71a sharp increase in the proportion of cells in the G2/M phase of the
72cell cycle (Hamel and Covell, 2002). A variety of natural com-
73pounds were found to be tubulin polymerization inhibitors
74(Fig. S1), such as paclitaxel (Jordan and Wilson, 2004), vinblastine
75(Hadfield et al., 2003), docetaxel and vincristine (Kuppens, 2006),
76combrestatin A-4 (Hamel and Covell, 2002), colchicine
77(Dumontet and Jordan, 2010; Hamel and Covell, 2002) and
78podophyllotoxin (Dumontet and Jordan, 2010). Unfortunately, the
79majority of mitotic spindle blockers failed in clinical trials because
80of their poor therapeutic indices. Many compounds were observed
81to produce inadequate efficacy and high toxicity in clinical trials
82due to the chemical instability and unrecognized multiple protein
83target interactions (Budman, 1997; Goldspiel, 1997). Despite the
84clinical failures of the first generation spindle poisons, paclitaxel
85has gained a huge success as a broadly effective and commercially
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86 successful anticancer drug. This success led to extensive efforts in
87 developing new effective antitubulin agents with improved phar-
88 macokinetic profiles and selectivity. Interestingly, these tubulin
89 binders were also found to interact with tumor endothelial cells
90 leading to a rapid occlusion of tumor vasculature and results in
91 necrotic cell death (Choi et al., 2013). Therefore, inhibition of tubu-
92 lin polymerization is a choice of strategy for estrogen sensitive as
93 well as hormone dependent breast cancers. As a result, a great
94 interest still persists in designing new antimitotic agents with
95 higher activity and less toxicity, and search for new antimitotic
96 agents is still on. Cytotoxic phenylindole derivatives were found
97 to be effective and promising potential antimitotic agents
98 (Gastpar et al., 1998; Kaufmann et al., 2007; Pojarova et al.,
99 2007; Vogel et al., 2008). The antiproliferative activities of these

100 compounds were tested against two breast cancer cell lines:
101 MDA-MB-231 and MCF7. The MDA-MB-231 cell line is a triple neg-
102 ative breast carcinoma (TNBC) cell line where three receptors –
103 human epidermal receptor 2 (HER2), estrogen and progesterone
104 receptors are not overexpressed. The MCF7 cell line retains several
105 characteristics of differentiated mammary epithelium including
106 ability to function estradiol via cytoplasmic estrogen receptors
107 and the capability of forming domes. Over the years, quantitative
108 structure activity relationship (QSAR) study has been utilized in
109 modeling a wide range of biological and physicochemical activities
110 (Lewis and Wood, 2014; Nantasenamat et al., 2010). To find the
111 structural features for the higher antimitotic activity, validated
112 comparative chemometric modeling was performed on phenylin-
113 dole derivatives through R-group QSAR (RQSAR), regression based
114 2D-QSAR, linear discriminant analysis (LDA) based 2D-QSAR stud-
115 ies, kernel-based partial least square (KPLS) and 3D-QSAR CoMSIA
116 studies. The aim of the work is not only to highlight the important
117 structural requirement of these derivatives but also to investigate
118 how well different QSAR-based molecular modeling tools predict
119 the structure activity relationship (SAR) and how much interpreta-
120 tions of these tools may correlate with each other.

121 2. Materials and methods

122 2.1. Dataset

123 A modeling set containing eighty phenylindole derivatives
124 (Gastpar et al., 1998; Kaufmann et al., 2007; Pojarova et al.,
125 2007; Vogel et al., 2008) were considered for the chemometric
126 studies. The general structure of the phenylindole derivatives with
127 arbitrary numbering is shown in Fig. 1.
128 Antiproliferative activities of these phenylindoles against
129 hormone-independent human MDA-MB-231 breast cancer cell line
130 as well as estrogen-sensitive MCF7 breast cancer cell line were
131 used for the chemometric modeling studies. Structures and the
132 antimitotic activities of these phenylindole derivatives are pro-
133 vided in the supplementary materials (Table S1).

134 2.2. Selection of training and test sets

135 The training and the test sets were selected by using the k-means
136 cluster analysis (k-MCA) technique (Halder et al., 2013; Tropsha,
137 2003), keeping an account on the maximum structural variation
138 as well as the activity variations for both of these datasets. While
139 computing clusters, both the observed activities and physicochem-
140 ical descriptors (AlogP, molecular fractional polar surface area,
141 molecular weight, number of hydrogen bond acceptor, hydrogen
142 bond donor, rotatable bonds, aromatic rings and molecular frag-
143 ments) were taken into consideration (Halder et al., 2013). The test
144 set was designed with 25% members of the dataset and remaining
145 compounds were treated as the training set. Since more than one
146 chemometric analyses were performed in the current study,

147multiple splitting was avoided. Rather, the principal component
148analysis (PCA) technique (Tropsha, 2003) was performed to check
149the uniformity of the test set in terms of structural and biological
150variation. The selected training and the test set combination was
151used in all chemometric analyses performed in the current work.

1522.3. R-group QSAR analyses

153The R-group analysis (Chen et al., 2013) is an extension of
154Free-Wilson analyses which is combined with the bitmap
155fingerprint-based QSAR method. This method may be utilized to
156elucidate SAR from the congeneric series of compounds. It is effec-
157tive in identifying scaffolds, attachment points and R-groups at
158each point. It also provides information regarding the function of
159each substitution for determination of the biological activities.
160Since the compounds of interest in the current work have a fixed
161scaffold (Fig. 1), the R-group analysis was performed to identify
162roles of important substitutions. Two R-group based QSAR
163(RQSAR) analyses – (a) pharmacophore-based RQSAR
164(Pharm-RQSAR) and (b) E-state-based RQSAR (Estate-RQSAR) studies
165were performed by R group analysis tool (Canvas, 2013). In the
166Pharm-RQSAR analysis, models were developed on the basis of phar-
167macophore feature counts present in the R groups (substitutions) as
168the independent variables. Different types of pharmacophore fea-
169tures to be analyzed are hydrogen bond acceptor (A), hydrogen
170bond donor (D), hydrophobic (H), negatively charged (N), positively
171charged (P) and ring aromatic (R). After completion of calculations,
172the R groups were labeled with these pharmacophore features, col-
173ored by significance (Red for the positive contribution and blue for
174the negative contribution and gray for inconclusive contributions. If
175a feature is missing in a position, a lower case letter is used for the
176pharmacophore feature type.). Similarly for the Estate RQSAR, the
177E-state atom types present in R-groups at each position were used
178as the independent variables. The attachment points were labeled
179with a list of letters representing the E-state atom types, colored
180by significance (same as the Pharm-RQSAR analysis). In current
181analyses, predicted activities of the Pharm-RQSAR and the
182Estate-RQSAR were compared with the experimental activities to
183understand roles of substitutions in determination of the observed
184activity. The correlation coefficient was calculated from the values
185of the observed and the predicted activities.

1862.4. Regression based 2D-QSAR study

187In the present work, both regression (Adhikari et al., 2014,
1882013a, 2013b) and classification QSAR analyses (Kar and Roy,
1892013a,b; Nandy et al., 2014, 2013) were performed so that more
190information could be extracted regarding the structural and
191physicochemical requirements.

1922.4.1. Calculation and selection of descriptors
193Different descriptors were calculated for the QSAR analysis. All
194the geometrics of phenylindole derivatives were completely

Fig. 1. General structure of phenylindole derivatives with arbitrary numbering.
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