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a b s t r a c t

The alarm system given in industrial plants are massive and complex. Under such condition, critical
alarms are overwhelmed by false and unnecessary alarms and thus result in severe safety issues. To
address the problem, this paper proposes a probabilistic signed digraph (PSDG) based alarm signal se-
lection method that requires achieving maximal system reliability. In this method, a PSDG model is firstly
constructed to visualize the causal relations between process variables. Then the criteria of observability
and identifiability are imposed to determine the candidate alarm variables that can qualitatively
distinguish all assumed faults. Instead of selecting the minimum number of combinations of candidate
variables, the alarm variables are optimized by a reliability formulation that takes into account the
missed alarm and false alarm probabilities of the system; this formulation is solved by the receiver
operating characteristic (ROC) graph. Finally, the developed methodology is illustrated using a Tennessee
Eastman process.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The growth of industrial scale and the sophistication of plant
monitoring systems increase the monitoring workload for each
plant operator, which contributes to the complexity of fault
detection and the increased probability of human error. In the plant
alarm system, if a variable moves beyond the predefined operating
limit, an alarm is triggered with sounds and lights, and the oper-
ators are notified that there might be a fault happening. However,
unnecessary alarms may be assigned because there isn't an effec-
tive method for plant alarm system design, and these redundant
alarms result in a flood of alarms in a short time. As defined by ISA
(International Society of Automation) (International Society of
Automation (ISA), 2009), an alarm flood is a condition during
which the alarm rate is greater than that the operator can effec-
tively manage, typically 10 or more alarms per 10 min period. In the
alarm flood, operators either turn off or ignore some alarms. The
worst case is that crucial alarms are overwhelmed and false judg-
ments or operations are made. Consequently, it is necessary and
urgent to design an effective alarm management strategy that

assists operators to quickly identify the cause of faults.
In recent years, alarm management has attracted increasing

attention by researchers and industrial companies. Both EEMUA
(Engineering Equipment and Materials Users' Association)
(Engineering Equipment andMaterials Users’ Association (EEMUA),
2007) in Europe and ISA in USA published standards about alarm
management. These standards provide guidance to help users
design, implement and maintain a well performing alarm system.
The alarm system design contains adjustment of threshold of
monitoring ranges and selection of alarm variables. For setting the
alarm limits, optimal filter, time delay and deadband (Izadi et al.,
2009; Adnan et al., 2011, 2013; Cheng et al., 2013a) were the
three common methods. Besides, Yang et al. (Yang et al., 2012)
adjusted the alarm limit by analyzing the correlation between
process variables and alarm variables. Zhu et al. (Zhu et al., 2014)
developed a dynamic alarm limit, which was especially suitable for
process transitions such as feedstock, throughput, or product grade
changes and maintenance operations. For selecting the alarm sig-
nals, some approaches, such as fuzzy clustering (Zhu and Geng,
2005; Geng et al., 2005), multivariate statistics (Chen, 2010),
pattern matching (Cheng et al., 2013b) and Bayesian analysis
(Pariyani et al., 2012), were proposed to improve process safety and
product quality. Furthermore, two alarm data visualization tools,
high density alarm plot (HDAP) and alarm similarity color map* Corresponding author.
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(ASCM), were presented to evaluate the integrated performance of
alarm system (Kondaveeti et al., 2010). However, all above-
mentioned alarm selection methods use the data driven
approach, and cannot explain the underlying relationship between
the selected alarm signals and the other alarm signals.

As the process industrial system is complex with nonlinear
properties, some cause-effect models, instead of mathematical
models, are being used in the alarm system analysis. The cause-
effect model (such as signed digraph, SDG) represents the causal
relationship between variables and shows the abnormality propa-
gation process. Luo et al. (Luo et al., 2007) firstly combined the
abnormality propagation diagram with the alarm system design.
This method selected the alarm source variables that are the
nearest neighbor distance from listed faults. Takeda et al. (Takeda
et al., 2010a, 2010b) proposed an alarm signal selection method
using a two-layer cause-effect model. The method evaluated the
sets of alarm source variables by reachability matrix and the signs
that upper or lower the monitoring range, and ensured that the
finally derived sets of candidate alarms could qualitatively identify
all assumed faults. Even though the above methods reduce the
number of alarms and improve the fault resolution, they ignore the
reliability of the selected alarm signals.

In engineering practice, alarms might be faulty. For example, an
alarmmay be raised even if the variable behaves normally, which is
called a false alarm; or no alarm may be raised when the variable
behaves abnormally, which is called a missed alarm. Therefore,
some redundant alarm variables should be allowed in case of fail-
ures. In order to describe the reliability of the system, the missed
alarm and the false alarm probability of the system are defined in
this paper. According to the reliability analysis, if the number of
alarm signals increases, the potential for nuisance alarms or alarm
flood become higher and higher, resulting in a high false alarm
probability and a low missed alarm probability. On the contrary, if
the number of alarm signals decreases, the false alarm probability
might decrease with larger missed alarm probability. Therefore,
missed alarm and false alarm are two aspects of reliability, and a
receiver operating characteristic graph is used in this research to
make a trade-off between them. Finally, the Tennessee Eastman
process is applied to reveal the advantages of this alarm signal
selection method.

2. Cause-effect representation

The probabilistic signed digraph (PSDG), as a development of
the traditional SDG, is presented to represent cause-and-effect
relationship between state variables. In the SDG model, a variable
node denotes a process variable, a reason node denotes an
abnormal reason that will cause variation of its adjacent variable
nodes, and a directed edge denotes a direct causal relationship
between them. The states of variable nodes in SDG include ‘0’, ‘þ’

and ‘�’, representing the normal state, higher than normal state
and lower than normal state, respectively. The signs of directed
edges include ‘þ’ and ‘�’, representing the cause node and effect
node change in the same direction or in the opposite direction. The
SDG model can be constructed from a topology of the plant piping
and the material and energy balance of the plant (Maurya et al.,
2003a, 2003b, 2006). Along with SDG model, operators can easily
find how a fault is propagated in the system.

Nevertheless, traditional SDG cannot describe the probability of
the causal influence between variables. Because there are self-
regulatory and control actions in the target system, some in-
fluences from one node to another node would be broken even
though there is causal connection between them. To this end, PSDG
model is developed on the basis of SDG model by introducing the
probabilistic information of the nodes and directed edges. The

PSDG model has been proposed in our previous work (Peng et al.,
2014), and its definition is reviewed briefly here.

Definition 2.1. A PSDG model g ¼ (G,4,P) is composed by a
directed graph G, a function 4 and a probability distribution P.

The directed graph G is defined as G ¼ (V,R,E), where
V ¼ fxj1 ; xj2 ;/; xjNg is a variable node set, R ¼ fxi1 ; xi2 ;/; xiMg is a
reason node set and E ¼ felkg (where l, k¼ i1,i2,…,iM, j1,j2,…,jN) is a
directed edge set. The function is defined as 4 : E/fþ;�g, and
4(elk) is the sign of directed edge elk.

The probability distribution P is defined as P:R,E/[0,1], where
fi ¼ P(xi) indicates the occurrence probability of fault reason xi
(xi2R), and pjK�1jK ¼ PðejK�1jK Þ indicates the propagation probability
from the cause node xjK�1

failure to effect node xjK failure (ejK�1jK2E).
Fig. 1 is an illustration of a PSDGmodel. In Fig. 1, the circle nodes,

rectangle nodes, directed solid lines and directed dotted lines
denote process variables, fault reasons, positive directed edges and
negative directed edges, respectively. It should be noted that every
reason node is considered as a root node, which has at least one
connection to the corresponding effect nodes and no connection to
a cause node.

3. Selection criteria of candidate alarm sets

To assist plant operators quickly diagnose faults and plan
countermeasures, the criteria of observability (detecting all faults)
and identifiability (distinguishing the exact fault) are discussed in
this section. Under these two criteria, the selected alarm signals can
statistically identify all assumed faults.

3.1. Obesrvability of all assumed faults

When a fault occurs, the alarmwill be measured not only by the
adjacent variables directly but also by the influenced variables due
to the propagation between process variables. Based on the defi-
nition of PSDG model, the reachability from a reason node to a
variable node pij (where i2fi1; i2;…; iMg; j2fj1; j2;…; jMg) can be
calculated as follows:

Fig. 1. An illustration of the PSDG model.
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