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a b s t r a c t

Nonlinear estimation techniques play an important role in process monitoring since some states and
most of the parameters cannot be directly measured. This paper investigates the use of several esti-
mation algorithms such as linearized Kalman filter (LKF), extended Kalman filter (EKF), unscented Kal-
man filter (UKF) and moving horizon estimation (MHE) for nonlinear systems with special emphasis on
UKF as it is a relatively new technique. Detailed case studies show that UKF has advantages over EKF for
highly nonlinear unconstrained estimation problems while MHE performs better for systems with
constraints.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

One important aspect of process safety is detection of abnormal
operating conditions. A common process monitoring approach is to
keep track of important states and parameters of a process and
compare them against their upper and lower bounds. However,
some of these states and most of the parameters cannot be directly
measured and instead have to be inferred from plant data.

Extended Kalman filters have found widespread use for
nonlinear state and parameter estimation. Unscented Kalman
filters, as recently proposed by Julier and Uhlman (2004), could in
theory improve upon EKF for state and parameter estimation since
linearization is avoided by an unscented transformation and at least
second order accuracy is provided. This last point is achieved by
carefully choosing a set of sigma points, which captures the true
mean and covariance of a given distribution and then passing the
means and covariances of estimated states through a nonlinear
transformation. As a result UKF is capable of estimating the
posterior mean and covariances accurately to a high order. Despite
UKF’s potential for good performance for state and parameter
estimation, only few applications in chemical engineering have
been reported so far (Rawlings & Bakshi, 2006; Romanenko &
Castro, 2004; Romanenko, Santos, & Afonso, 2004).

This paper investigates the performance of UKF in several case
studies. A detailed comparison is made between several state
estimation methodologies with a specific emphasis on UKF as it is
a relatively new technique. The question as to what degree the filter
design affects the estimation results is addressed. Detailed case
studies show that UKF and EKF have a similar performance for

mildly nonlinear systems and UKF outperforms EKF for strongly
nonlinear systems when measurement noise levels are relatively
high. However, both EKF and UKF may have limitations for con-
strained problems and MHE may prove to be a better suited alter-
native for these cases.

This paper is organized as follows: In Section 2, a brief review of
nonlinear state and parameter estimation is presented along with
the most widely-used EKF algorithm and the optimization-based
MHE strategy. The UKF algorithm for nonlinear estimation is then
presented in Section 3. Section 4 compares the performance of each
filter for state and parameter estimation and concluding remarks
are given in Section 5.

2. Overview of commonly used techniques

This section provides background information for state and
parameter estimation and briefly reviews existing algorithms, i.e.,
LKF, EKF and MHE.

2.1. State estimation

A class of nonlinear systems of interest in state estimation is
given by:

xk ¼ f ðxk�1;uk�1;wk�1Þ
yk ¼ hðxk;uk; vkÞ

(1)

where xk˛Rn is a vector of the state variables, the functions f and h
are differentiable functions of the state vector x, wk˛Rn is a vector
of plant noise, with E[wk]¼ 0 and E[wkwk

T]¼Qk; yk˛Rm is a vector of
the measured variables, the function h is a differentiable function of
the state vector x and vk˛Rm is a vector of measurement noise, with
E[vk]¼ 0 and E[vkvT

k]¼ Rk; n is the number of states, m refers to the
number of measurement variables. The distributions of w and v are
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not necessarily Gaussian. The initial value x0 may be assumed to be
a Gaussian random variable with known mean and known n� n
covariance matrix P0.

The objective is to find an estimate bxk of xk to minimize the
weighted mean-squared error Eðxk � bxkÞMðxk � bxkÞT, where M is
any symmetric nonnegative definite weighting matrix. If all esti-
mates weigh equally, the objective becomes to minimize the error
covariance matrix for an unbiased estimator, given by
P ¼ Eðxk � bxkÞðxk � bxkÞT. More specifically, the trace of P is chosen
to be minimized resulting in the performance index
J ¼ 1

2Tr½Eðxk � bxkÞðxk � bxkÞT�.

2.2. Parameter estimation

Parameter estimation involves a nonlinear mapping of the form:

xk ¼ f ðxk�1;uk�1;wk�1; qkÞ
yk ¼ hðxk;uk; vk; qkÞ

(2)

where qk is a vector parameterizing the nonlinear function f. The
description of qk corresponds to a stationary process with identity
state transition matrix, driven by process noise wk�1.

One technique for estimating parameters is to augment the state
vector with the parameters to be estimated: zk¼ [xk

T qk
T]T. The esti-

mation of both states and parameters can be done recursively by
writing the state-space representation as:

zk ¼
�

f ðxk�1;uk�1;wk�1; qk�1Þ
qk�1 þwk�1

�
(3)

2.3. Linearized Kalman filter

A linearized Kalman filter is the local solution for nonlinear
estimation problems based on linearization about a nominal state
value. The following equations define the discrete-time form of the
LKF:

Prediction equations

bxkjk�1 ¼ A
�bxk�1jk�1 � x0

�
þ x0 þ Buk�1byk ¼ Cbxkjk�1 þ Duk

(4)

Update equations

Pkjk�1 ¼ APk�1jk�1AT þ GQGT

Kk ¼ Pkjk�1CT
�

CPkjk�1CT þ HRHT
��1

Pkjk ¼ ðI � KkCÞPkjk�1bxkjk ¼ bxkjk�1 þ Kk

�
yk � byk

� (5)

where Azvf
vxjx0

, Bzvf
vuju0

, Czvh
vxjx0

, Dzvh
vuju0

, Gz vf
vwjw0

and Hzvh
vvjv0

are
the matrices of the linearized system model around the nominal
value of the states x0. The matrices Q and R are the tuning param-
eters of the Kalman filter. Q is used as a measure of confidence in the
process model while R represents a measure of confidence for the
sensor readings. If the process noise or uncertainties are relatively
large compared to the observation noise, then Q has large values
compared to R, and vice versa. The matrix P0 provides a measure of
confidence in the knowledge of the initial states x0. The notation
involving Q, R, and P0 also applies to other estimation methods such
as EKF, UKF or MHE mentioned throughout this work.

2.4. Extended Kalman filter

Linear Kalman filters assume that a process stays close to the
nominal operation point. However, the values of the states can be
quite different from the nominal values due to input changes.

Extended Kalman filters address this problem by linearizing the
system model along its trajectory. The equations defining the
discrete-time form of the EKF are summarized in the following:

Prediction equations

bxkjk�1 ¼ f
�bxk�1jk�1;uk�1

�
byk ¼ h

�bxkjk�1;uk

� (6)

Update equations

Pkjk�1 ¼ Ak�1Pk�1jk�1AT
k�1 þ Gk�1QGT

k�1

Kk ¼ Pkjk�1CT
k

�
CkPkjk�1CT

k þ HkRHT
k

��1

Pkjk ¼ ðI � KkCkÞPkjk�1bxkjk ¼ bxkjk�1 þ Kk

�
yk � byk

� (7)

where Ak�1zvf
vxjbx �k�1

, Ckzvh
vxjbxkjk�1

, Gk�1z vf
vwjwk�1

and Hkzvh
vvjvk

are the

matrices of the linearized system model and evaluated at the
estimated state values.

2.5. Moving horizon estimation

In contrast to EKF which is intended for unconstrained prob-
lems, moving horizon estimation is an optimization-based
approach. From a perspective of Bayesian theory, the state esti-
mation problem can be formulated as the solution of the following
optimization problem:

minx0;fwkgT�1
k¼0

fTðx0; fwkgÞ ¼ minz;fwkgT�1
k¼T�N

XT�1

k¼ T�N

v0kR�1vk

þw0kQ�1wk þ qT�NðzÞ: (8)

subject to

xk ¼ f ðxk�1;uk�1;wk�1Þ
yk ¼ hðxk;ukÞ þ vk
xk ˛X;wk˛W ; vk˛V

(9)

where the sets X, W and V can be constrained,
xk : ¼ xðk; z; fwjgk�1

j¼T�NÞ denotes the solution of system (9) at time k
when the initial state is z,fwjgk�1

j¼T�N is the process noise sequence
from time T�N to k� 1 and vk : yk� h(xk, uk). qT�N(z) is referred to
as the arrival cost, which summarizes the effect of the data
fykgT�N�1

k¼0 on the state xT�N and makes it possible to transform the
optimization problem into one of lower dimension.

For unconstrained, linear systems, the arrival cost can be
expressed explicitly since the MHE optimization simplifies to the
Kalman filter and its covariance update formula can be used (Rao &
Rawlings, 2002). Subject to the initial condition P0 and assuming
the matrix PT � N is invertible, the arrival cost can then be
expressed as

qT�NðzÞ ¼
�

z� bxT�N

�0
P�1

T�N

�
z� bxT�N

�
þ f*

T�N (10)

where bxT�N denotes the optimal estimate at time T�N given all of
the measurements yk from time 0 to T�N� 1, fT � N

* represents the
optimal cost at time T�N and PT � N is computed from the Kalman
filter covariance update

PT ¼ APT�1AT þ GQGT � APT�1CT
�

CPT�1CT

þ HRHT
��1

CPT�1AT (11)

The solution to the problem described by Eqs. (8) and (10) is the
unique optimal pair ðz*; f bw*

kg
T�1
k¼T�NÞ which can be integrated to
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