FISEVIER Contents lists available at ScienceDirect ## Journal of Loss Prevention in the Process Industries journal homepage: www.elsevier.com/locate/jlp ## Economic valuation of damages originated by major accidents in port areas Andrea Ronza a,*, Lara Lázaro-Touza b, Sergi Carol a, Joaquim Casal a #### ARTICLE INFO Article history: Received 15 October 2008 Received in revised form 16 February 2009 Accepted 9 March 2009 Keywords: Accident cost Port Major accident Risk analysis Social risk Environmental impact #### ABSTRACT Due to special features of ports – variety of activities: storage and loading/unloading of hazardous materials; circulation of ships, lorries and trains; proximity to urban zones; etc. – major accidents can be associated with severe damages. The cost of such accidents must be known to allow for compensation to people and companies. A procedure is presented to estimate the cost of damages suffered by people, equipment and environment. Criteria to assess the cost of damage to people – a controversial issue – are discussed, establishing a method to predict the number of people killed, injured and evacuated. Economic compensation is proposed. Environmental damages are also considered. These include potential damage to the atmosphere, soil, water and fauna. Estimates of the cost of the equipment and buildings affected by the accident are proposed. Finally, an assessment of the loss of profits due to activity breakdown and indirect costs is analysed. The methodology presented can easily be extended to general, inland process and storage sites. © 2009 Published by Elsevier Ltd. #### 1. Introduction A great variety of activities are performed in ports: transport of passengers; transport of cargo; storage of oil and chemicals; storage and transport of cars; circulation of ships, lorries and trains; etc. Due to this intense activity, ports are very important facilities for the economy of a country. To give an idea, in 2001, 357 million persons travelled through EU ports and the total tonnage of goods handled in the EU was estimated at 3000 million tonnes (Eurostat, 2003a). There were 261 maritime ports handling over 1 million tonnes of goods per year; 70% of all trade with third countries was channelled through the ports (Eurostat, 2003b). Nevertheless, among all these activities there are some which imply a certain risk. In 2002, of the 6000 million tonnes of seaborne cargo, 1700 million tonnes were represented by crude oil, around 500 by other oil products and a significant part of the rest are other hazardous materials. This entails risk of large-scale accidents, to which port areas and their vicinities are highly exposed. Accidents such as those of the 'Haven' (1991, Genoa) or the 'Prestige' (2002, A Coruña) highlight the financial and social repercussions of these events. Other less known accidents occur from time to time which also entail serious losses: of equipment or, sometimes, of human lives. The consequences of these accidents, beyond direct material or human losses, include the costs of emergency action, cleaning-up affected areas, spilled product recovery, etc. Table 1 lists some of the most severe accidents that have happened in port settings. Data are extracted from a list of 1029 accidents previously analysed (Darbra, Ronza, Carol, Vílchez, & Casal, 2004), which in turn proceeded from the MHIDAS database (Health and Safety Executive, 2005). Since information on accidental costs is seldom available, the data of Table 1 are not representative of the worst accidents occurred in ports. Nevertheless, they are significant examples of how port HazMat accidents can have significant economic consequences. Although risk analysis and control of major accidents in fixed installations is regulated in the EU by the Seveso II Directive (European Parliament and the Council of the European Union, 1996), this does not affect the transportation of hazardous substances, whether airborne, seaborne, by road, rail or inland waterway. Moreover, the risk associated with the presence of hazardous substances on ships and/or in port areas is difficult to evaluate, due to the particular nature of these systems. A "port area" is characterised by a wide range of activities: whereas some of these are common to the majority of industrial areas (e.g., big oil terminals, presence of rail or road traffic, chemical and petrochemical plants, etc.), there are several activities that are to be encountered exclusively in harbour settings. The latter involve all ^a Department of Chemical Engineering, Centre d'Estudis del Risc Tecnològic (CERTEC), Universitat Politècnica de Catalunya. Diagonal 647, 08028-Barcelona, Catalonia, Spain b Department of Geography and Environment, London School of Economics and Political Science, Houghton Street, London WCZA 2AE, England ^{*} Corresponding author. Tel.: +34 934016675; fax: +34 934011932. E-mail address: andrea.ronza@upc.edu (A. Ronza). | Nomenclature | | | cost of cleaning-up water (€/km²) | |--------------------|---|----------------------------------|---| | | | d | number of days (of evacuation or interruption of | | а | constant in Eq. (2) (-) | | activity) (days) | | Α | overall terrestrial surface of the port (ha) | F | annual turnover of a plant (€) | | $A_{\rm a}$ | surface affected by the accident (ha) | f | recovered fraction (-) | | A_{s} | area affected (soil) (km²) | g | constant in Eq. (6) (€) | | A_{w} | area affected (water) (km²) | h | constant in Eq. (6) | | b | constant in Eq. (2) (-) | I | daily income of port (€/day) | | $C_{\rm act}$ | breakdown costs (€) | K | constant in Eq. (5) (€) | | $C_{\rm cl}$ | cleaning cost of the spill (US \$ 1981 for Eq. (4); € for | L | total mooring line length (m) | | | Eq. (5)) | L_{a} | length of mooring line affected (m) | | $C_{\rm E}$ | compensation for one evacuee per day (€/day) | M | mass of hydrocarbon recovered (tonnes) | | C_{env} | cost of environmental damage (€) | $N_{\rm E}$ | number of evacuated people (-) | | $C_{I, k}$ | compensation for a person injured in category $k \in ($ | N_{I} | number of injured people (-) | | C_{K} | compensation for one fatality (€) | $N_{I, k}$ | number of injured people in category $k(-)$ | | C_{LI} | compensation for a lightly injured person (€) | $N_{ m K}$ | number of fatalities (-) | | C_{LP} | total costs of lost profits (€) | n_{ODW} | number of off-duty workers (-) | | C_{LW} | cost of lost wages (€) | $N_{ m va}$ | number of valuable animals lost (-) | | $C_{\rm p}$ | cost of damage to population (€) | Q | amount spilled (m³) | | $C_{\rm plant}$ | cost of a process plant (€) | S_{a} | affected plant area (m²) | | $C_{\rm r}$ | capital ratio (-) | S_{t} | overall plant area (m²) | | $C_{\rm s}$ | unit cost of soil remediation (€/km²) | V | volume of hydrocarbon recovered (gallons) | | C_{SI} | compensation for a severely injured person (€) | $V_{\rm t}$ | tank volume (m³) | | C_{t} | cost (free on board) of storage tanks (US \$ 1969) | W | daily wage (€/day) | | C_{va} | unit cost of a valuable animal (€) | α , α_0 , α | $_{1}$, α_{2} constants in Eqs. (4) and (5) | | C_{VSI} | compensation for a very severely injured person (€) | | | Table 1 Some port accidents that caused vast economic damage (source: Health and Safety Executive, 2005). | Date | Location | Economic
damage (10 ⁶ \$) ^a | Description of the accident | N _K | N _I | N _E | |---------|-------------------------|--|---|----------------|----------------|----------------| | 01/1981 | New York,
NY, USA | 280 | Grounding of the tank ship "Concho"; 75% of NY
Bay was covered with fuel oil. | 0 | 0 | 0 | | 09/1979 | Deer Park,
TX, USA | 68 | A ship off-loading vacuum distillate was struck by lightning and exploded. A piece of vessel punctured an ethanol tank at the refinery, igniting its contents. The explosions in the ship's hold spread, burning the distillate which set fire to several docks and four petroleum products barges. | 3 | 12 | | | 10/1979 | Newcastle,
Australia | Almost 60 | A coal loader (cost: \$90 m) was extensively damaged by a fire started with coal dust explosions. The conveyor belt was also damaged. The Exports of coal from New South Wales were cut by at least a third. | | | | | 03/1993 | San Vicente,
Chile | >50 | Massive pool fire on sea water, ignited by a welding spark during ship discharge. | | | | | 02/1976 | Houston, TX,
USA | 45 | One row of a multi-storey concrete grain elevator was destroyed. A ship was damaged by debris. The 5×10^6 t of grain was destroyed, as well as the underground loading system. | 9 | 7 | | | 11/1979 | Istanbul, Turkey | >40 | A tanker exploded after a collision with a Greek freighter near docks. Three weeks after the oil burning in the harbour had been brought under control, the ship, still burning, suffered further explosions sending flames 300 m high and hurling burning debris on shore. | 52 | 3 | | | 04/1979 | Port Neches,
TX, USA | 35 | Fire, followed by blasts, engulfed the Liberian tanker "Sea Tiger". | 2 | 30 | | | 09/1997 | Visakhapatnam,
India | 25.5 | A vessel was unloading LPG into a storage tank when a leaking pipe caught fire. The fire spread to other storage tanks containing kerosene, crude oil, and petroleum products. The buildings nearby were significantly damaged. Very high death toll. 100,000 people were evacuated. | 56 | 20 | 100,000 | | 12/1976 | San Pedro,
CA, USA | 21.6 | "SS Sansinena" was being ballasted after off-loading crude oil. A flash fire was followed by a massive explosion (windows broken to 4 km). The entire tank deck rose 250 m into the air. | 9 | 58 | 1000 | | 12/1985 | Naples, Italy | >20 | An explosion/fire during transfer of petrol from a ship to storage tanks spread to 27 storage tanks containing 72,000 t of gasoline/diesel/oil. Two people outside the depot were killed by falling masonry. | 4 | 170 | 2001 | | 05/1976 | La Coruña,
Spain | 18.7 | The tanker "Urquiola" struck an uncharted rock while approaching the harbour. Authorities ordered the ship to remain offshore. The ship holed again and a subsequent series of fires/explosions sank her, spilling 102,000 t of oil, at least 30,000 t of which were washed up along 210 km of shore. | 1 | 0 | | ^a The source does not specify to what year the values here reported have to be referred. ### Download English Version: # https://daneshyari.com/en/article/586938 Download Persian Version: https://daneshyari.com/article/586938 Daneshyari.com