

Available online at www.sciencedirect.com

Catalysis Today 120 (2007) 292–297

www.elsevier.com/locate/cattod

Thermal decomposition of $Li₃AlH₆$ with TiAl₃ catalyst

Jae-Hyeok Shim^a, Gil-Jae Lee^a, Byeong-Joo Lee^b, Young-Joo Oh^a, Young Whan Cho^{a,*}

^a Materials Science and Technology Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea ^b Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Gyungbuk 790-784, Republic of Korea

Available online 1 November 2006

Abstract

It has been found that the reaction products between TiCl₃ and Li₃AlH₆ by mechanical milling consist of LiCl and TiAl₃ together with TiH₂. Thermodynamic calculation also predicts that TiAl₃ becomes dominant over TiH₂ with increasing temperature. Based on this, ultra-fine TiAl₃ powder having the primary particle size of about 100 nm has been mechanochemically synthesized from a mixture of TiCl₃, AlCl₃ and Mg. The addition of this TiAl₃ powder into Li₃AlH₆ clearly shows a good catalytic effect on the thermal decomposition of L_{i3}AlH₆ as expected. The use of fine TiAl₃ catalyst is certainly more favorable than TiCl₃ in terms of hydrogen storage capacity as it does not produce irreversible chloride byproduct in alanates.

 \odot 2006 Elsevier B.V. All rights reserved.

Keywords: Hydrogen storage materials; Alanate; Catalyst; Thermal decomposition; Mechanochemical synthesis

1. Introduction

The development of solid-state hydrogen storage at low and medium temperatures has been recognized as one of the key technologies for hydrogen fuel cell applications. Especially for vehicular applications, it is important to find new light-weight hydrogen storage materials that exhibit high reversible hydrogen capacity [\[1\]](#page--1-0).

Alkali and alkali-earth metal alanates (aluminum hydrides) have received great attention as promising hydrogen storage materials owing to their inherent high theoretical hydrogen capacity, since Bogdanović and Schwickardi [\[2\]](#page--1-0) first demonstrated in 1997 that reversible hydrogen storage could be achieved under moderate conditions (temperature and pressure) with accelerated kinetics in NaAl H_4 and Na₃Al H_6 by adding a small amount of Ti-containing catalysts such as $TiCl₃$ and Ti(OBu)4 through wet chemistry. Following this finding, Jensen and his coworkers [\[3,4\]](#page--1-0) reported improved kinetics by dispersing Ti-containing catalysts using a dry milling process. Currently, mechanical ball milling is being widely adopted to disperse a small amount of catalysts effectively into sodium

0920-5861/\$ – see front matter \odot 2006 Elsevier B.V. All rights reserved. doi[:10.1016/j.cattod.2006.09.005](http://dx.doi.org/10.1016/j.cattod.2006.09.005)

alanates in solid state [\[5,6\]](#page--1-0). In addition to sodium alanates, it has been shown that other alanates such as lithium alanates could also be catalyzed with Ti-containing materials [\[7\]](#page--1-0). In spite of the outstanding performance of Ti-containing catalysts, there is still no clear understanding on how they play a catalytic role in alanates. The first step toward the understanding of this catalytic mechanism would be to confirm what form of Ti exists in alanates. However, it is quite difficult to confirm unambiguously the state of Ti (e.g. metallic Ti, Ti compounds or Ti substitution in alanates) in alanates using most analytical techniques, because a very small amount of Ticontaining catalysts are usually added. On the whole, there exit two hypotheses on the Ti state in alanates. While the results of recent investigations [\[8–12\]](#page--1-0) seem to support the hypothesis that Ti in situ forms TiAl₃ when introduced into alanates, there is another hypothesis that Ti substitutes for metal sites in alanates [\[13–15\]](#page--1-0).

Assuming that Ti does transform into $Tial₃$ in alanates, it is worthwhile to confirm its efficacy by adding TiAl₃, instead of $TiCl₃$, into alanates because $TiCl₃$ permanently reduces hydrogen storage capacity of alanates by reacting with part of alanates to form very stable salts such as NaCl and LiCl. In fact, Balema et al. [\[8\]](#page--1-0) and Resan et al. [\[16\]](#page--1-0) have recently attempted to confirm the catalytic activity of $TiAl₃$ by dispersing TiAl₃ powder prepared by milling the arc melted

^{*} Corresponding author. Tel.: +82 2 958 5465; fax: +82 2 958 5379. E-mail address: oze@kist.re.kr (Y.W. Cho).

Fig. 1. Calculated stability diagram of LiH, $Li₃AIH₆$ and LiAlH₄ [\[18\].](#page--1-0)

sample and commercial powder $\left($ <150 μ m), respectively, into $LiAlH₄$. They showed that the addition of TiAl₃ indeed decreased the dehydrogenation starting temperature of LiAlH4 by about 10° C, although the catalytic effect may not be significant. It is, therefore, desirable to produce as fine TiAl₃ powder as possible as the catalytic efficacy will be naturally enhanced with decreasing particle size of catalyst. Mechanical milling is one of the simple and cost-effective methods for producing TiAl₃ powders. However, it might be difficult to obtain fine $TiAl₃$ particles using conventional milling techniques because $TiAl₃$ is relatively ductile and thus they easily agglomerate during milling [\[17\].](#page--1-0)

The purpose of this study is to elucidate if $TiCl₃$ indeed forms TiAl₃ in $Li₃AlH₆$ using both experimental work and theoretical calculations and to investigate the catalytic effect of $TiAl₃$ on thermal decomposition (dehydrogenation) of $Li₃AlH₆$ using ultrafine $TiAl₃$ powder prepared by mechanochemical reaction between $TiCl₃$, $AlCl₃$ and Mg powders. The main reason to adopt $Li₃AIH₆$ (5.6 wt.% H₂) instead of LiAlH₄ $(7.9 \text{ wt.} \% \text{ H}_2)$ is that the hydrogen pressure required to rehydrogenate LiAlH₄ is estimated to be an order of 10^4 bar, according to our recent thermodynamic calculation shown in Fig. 1 [\[18\].](#page--1-0)

2. Experimental procedure

LiAlH₄ (95%), LiH (95%), TiCl₃ (99%) and AlCl₃ (99.9%) powders were purchased from Sigma–Aldrich, and Mg (99.8%) powder from Alfa–Aesar. In order to synthesize $Li₃AIH₆$ mechanochemically, a 5 g mixture of $LiAlH₄$ and LiH with a molar ratio of 1:2 was charged together with ten 15 mm and thirty 10 mm diameter zirconia balls into a 250 ml silicon nitride bowl under an argon atmosphere in a glove box. The ball-to-powder weight ratiowas approximately 37:1. The mixture was milled in a Fritsch P4 planetary mill at 350 rpm for 4 h 30 min.

A 1 g mixture of mechanochemically prepared $Li₃AIH₆$ and $TiCl₃$ was charged together with seventeen 7.9 mm diameter Cr-steel balls into a tool steel vial under an argon atmosphere. The ball-to-powder weight ratio was approximately 35:1. The mixture was milled in a SPEX-8000 mill for 2 h. Some of the milled powders were rinsed in distilled water and filtered to remove chloride formed during milling. The mole ratio between Li_3AlH_6 and TiCl₃ was changed from 1:1 to 6:1.

In order to synthesize fine TiAl₃ mechanochemically, a mixture of $TiCl₃$, AlCl₃ and Mg powders with a molar ratio of 1:3:6 was milled for 4 h using the SPEX-8000 mill at the same milling condition as described before. The milled powder was rinsed in distilled water and filtered to remove $MgCl₂$ byproduct formed during milling.

The product powders were characterized by X-ray diffraction (XRD) using Bruker D8 Advance with Cu K α radiation and scanning electron microscopy (SEM) using FEI XL-30 FEG.

In order to confirm the catalytic effect of fine $TiAl₃$ on the thermal decomposition of $Li₃AIH₆$, 5 mol% TiAl₃ was dispersed into $Li₃AIH₆$ by milling the mixture in the SPEX-8000 mill for 30 min. The same amount of $TiCl₃$ was also dispersed into $Li₃AIH₆$ for comparison. The thermal decomposition behavior of $Li₃AIH₆$ with and without catalyst was analyzed by differential scanning calorimetry (DSC) using NETSCH DSC204 and thermogravimetry (TG) using NETSCH TG209. The heating rate was 2° C/min and the flow rate of 99.9999% argon gas was 50 ml/min for both DSC and TG measurements. The kinetics of the thermal decomposition reaction was volumetrically measured by a Sievert type apparatus.

3. Thermodynamic calculation

Thermodynamic calculation of the Li–Al–H–Ti–Cl system was performed based on the Gibbs-energy minimization criterion [\[19\]](#page--1-0) to understand what the equilibrium phases are in the $Li₃AIH₆$ and TiCl₃ mixtures. The phases included in this calculation were Li_3AlH_6 , LiAlH₄, LiH, TiCl₃, LiCl, Ti, Al, TiAl, TiAl₃, Ti₃Al, TiAl₂, Ti₅Al₁₁, TiH₂ and H₂. The Gibbs energy data for $Li₃AIH₆$ and $LiAlH₄$ were taken from Ref. [\[18\]](#page--1-0). The data for the Ti–Al intermetallic phases and all the other phases were from the SGTE solution and substance databases, respectively, which are incorporated into Thermo-Calc [\[20\]](#page--1-0).

4. Results and discussion

The XRD pattern of the mixture of $LiAlH₄$ and LiH milled for 4 h 30 min is presented in [Fig. 2](#page--1-0). The peak positions are in good agreement with those of $Li₃AlH₆$ obtained by Zaluski et al. [\[21\]](#page--1-0) and Balema et al. [\[22\]](#page--1-0). It is, therefore, confirmed that $Li₃AlH₆$ forms during milling according to the following reaction:

$$
LiAlH_4 + 2LiH \rightarrow Li_3AlH_6 \tag{1}
$$

The XRD patterns of reaction products between $LiAlH₆$ and TiCl₃ milled for 2 h are shown in [Fig. 3.](#page--1-0) For the 6:1 mixture,

Download English Version:

<https://daneshyari.com/en/article/58709>

Download Persian Version:

<https://daneshyari.com/article/58709>

[Daneshyari.com](https://daneshyari.com/)