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a b s t r a c t

Objectives: In accordance with dynamical systems theory, which assumes that motor behaviour emerges
from interacting constraints (task, organismic, environmental), this study explored the functional role of
inter-individual variability in inter-limb coordination.
Design: 63 front crawl swimmers with a range of characteristics (gender, performance level, specialty)
performed seven intermittent graded speed bouts of 25 m in front crawl.
Methods: Each bout was video-taped with a side-view camera from which speed, stroke rate, stroke length
and index of arm coordination (IdC) were analysed for three cycles. Cluster analysis was used to classify
the swimmers through speed and IdC values.
Results: Cluster analysis and validation showed four profiles of IdC management expressing the
swimmers’ characteristics as cluster 1: mainly national distance male swimmers, cluster 2: mainly inter-
national male sprinters, cluster 3: distinguished by female characteristics, and cluster 4: swimmers with
the lowest level of performance.
Conclusions: These profiles generated different IdC-speed regression models, which (i) showed how the
swimmers adapted their motor behaviour to overcome task constraints and (ii) supported the key idea
that there is not a single ideal expert model to be imitated, but rather adapted behaviour emerging from
individually encountered constraints.

© 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Variability in human behaviour has long been considered a
dysfunctional aspect of motor control,1 indicative of the amount
of noise to be reduced.2 From this perspective, high skill can be
defined as the capability to automatically reproduce the exact same
movement. In practice, however, variability in human behaviour
occurs at many levels in the training process, suggesting that the
achievement of skilled behaviour does not depend on a specific
profile. Dynamical systems theory emphasises that variability has
a functional role,2 because it allows for the flexibility required to
adapt to a variety of constraints.3 In this context, variability is a
mechanism by which individuals adapt their movements to the
interaction of organismic, environmental and task constraints.4,5

Variability allows performers to explore different motor solutions,
facilitating the discovery and adoption of individualised optimal
patterns of coordination.

In swimming, several constraints can be manipulated to make
a desired behaviour emerge and partially explain inter-individual
variability in arm coordination.6,7 For example, water density and
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temperature, the direction of water flow, underwater visibility, and
waves on the water surface act as environmental constraints that
cause more or less aquatic resistance to the forward displacement
of the body. Active drag is also related to the individual’s proper-
ties, and thus individual anthropometric characteristics, locomotor
disabilities, passive drag and floatation parameters, strength and
muscular fibres, and energetic capacities can be considered as
organismic constraints that contribute to inter-individual vari-
ability. Last, traditional task constraints like speed, stroke rate,
instructions from the coach, and equipment or devices (e.g., pad-
dles, fins) are often manipulated to pace the swimmer or to bring
about change in the swimmer’s technique. An understanding of
how these constraints interact would further elucidate the func-
tional role of inter-individual variability and ultimately contribute
to the definition of coordination profiles.8

In front crawl, Chollet et al.9 presented three modes of arm coor-
dination (catch-up, opposition, superposition), which can be used
differently, notably as a function of speed (i.e., task constraint).
It was also shown that the changes of arm coordination from a
catch-up to a superposition mode could relate to the increase of
aquatic resistance (i.e., environmental constraint).7 Beyond the
effect of task and environmental constraints on arm coordina-
tion changes, recent studies highlighted the effect of organismic
constraints. In particular, these studies showed inter-individual
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variability regarding gender,10,11 skill6 and swim specialty,13,14

suggesting that the range of arm coordination modes was individ-
ual. In other words, all swimmers might not use the three modes
of arm coordination in front crawl supporting the theory that there
are several ways to adapt arm coordination to increase speed. The
main aim of the present study was to revisit the pioneering study of
Chollet et al.9 and show that the arm coordination changes usually
observed when speed increases should be reconsidered according
to the swimmer’s characteristics (especially gender, skill level and
swim specialty).

Cluster analysis, by unsupervised machine learning,15 is an
interesting technique to detect patterns within high-dimensional
datasets, in our case, the swimmer’s characteristics without human
intervention and the inherent bias. One significant advantage
of movement pattern clustering is that no a priori assumptions
about the structure of the dataset are required to identify similar
patterns.8,16,17 Rein et al.18 explored inter-individual differences in
the hook shot of basketball players with various skill levels. Clus-
ter analysis provided several profiles, showing that coordination
modes differed between participants as they threw from various
distances from the basket.18 Cluster analysis also showed the func-
tional role of variability in recreational breaststroke swimmers, as
some swimmers used an in-phase mode of arms-legs coordination
to keep their body close to the water surface, while others used an
out-of phase mode to overcome aquatic resistance.19

The second aim was to provide a regression model for each
cluster of swimmers determined by cluster analysis. Indeed, most
biomechanical modelling in swimming concerns performance
modelling20 and the associated parameters (e.g. stroke rate and
stroke length).21,22 However, few studies have tried to model the
underlying motor organisation of this cyclic task. On one hand,
Seifert et al.6 modelled the change in arm coordination with speed
increases by piecewise linear regression, showing a bifurcation in
arm coupling between the slow and fast race paces. On another
hand, Hay22 modelled the stroke frequency-speed and stroke
length-speed relationships by quadratic regression for cyclic activi-
ties such as swimming, canoeing, kayaking. In that way, Seifert and
Chollet23 showed that the arm coordination-speed relationships
of elite swimmers could also be modelled by quadratic regression.
Thus, as both the index of coordination and active drag increase
with speed square, these authors suggested that arm coordination
changes mostly related to environmental constraint (i.e., aquatic
resistance). However, these studies only considered the effects of
gender and skill level by assigning each swimmer to a category,
which prevented the analysis of inter-individual variability.

2. Methods

Sixty-three French front crawl swimmers with various char-
acteristics volunteered for this study (Table 1). The protocol was
approved by the Rouen university ethics committee and followed
the declaration of Helsinki. The protocol was explained to the swim-
mers who then gave their written informed consent to participate.

The swimmers performed seven intermittent graded speed
bouts of 25 m in front crawl. To avoid fatigue effects, each swimmer
simulated the seven individual 25 m bouts at paces correspond-
ing to specific race distances: 1500 m, 800 m, 400 m, 200 m, 100 m,
50 m, and maximal speed, with 4 min of rest before the next bout
was swum. They started in the water without diving and each bout
was self-paced to avoid the speed variations that can arise when
swimmers follow a target.

The swimmers were video-taped by two underwater video cam-
eras (Sony compact FCB-EX10L, f = 50 Hz), with one camera placed
to obtain a frontal view and the other to obtain a side view. The
frontal underwater camera was fixed on the edge of the pool, 0.4 m

below the water. The side underwater camera was fixed on a trol-
ley and an operator followed the swimmer’s head to avoid parallax.
Both cameras were connected to a timer, a video recorder and a
screen to mix and genlock the frontal and side views on the same
screen. A third camera mixed with the side view for time synchro-
nisation video-taped all trials with a profile view from above the
water.

The lateral aerial view allowed the calculation of the average
speed (S in m s−1) over a 10 m distance (from 10 m to 20 m) using the
swimmer’s head as the marker. Over this distance, a mean period
(defined as the time that separates two consecutive entries of the
same hand in the water) was determined with the timer on three
consecutive arm strokes (Tcycle) taken in the 10 m central part of
the pool. An average stroke rate value (SR = 1/Tcycle in Hz) was cal-
culated. The stroke length (SL in m) was calculated from S and SR
(SL = S/SR).

In line with Chollet et al.,9 four arm phases per stroke (entry
and catch of the hand in the water, pull, push, aerial recovery) were
determined from the two underwater views every 0.02 s by three
independent operators measuring with a blind technique. Three
strokes were analysed. The index of arm coordination (IdC) calcu-
lated the time gap between the propulsions of the two arms.9 The
duration of each phase and the IdC were expressed as a percentage
of the arm stroke duration. Catch-up mode corresponded to lag time
between two propulsive actions (IdC < 0%), opposition mode corre-
sponded to continuity between two propulsive actions (IdC = 0%),
and superposition mode corresponded to overlap between two
propulsive actions (IdC > 0%).

Statistical analysis was conducted through clustering method.
Machine learning method has been implemented using unsu-
pervised training wherein categories of examples were ignored
(performance level, gender, and specialty) and only features from
each recorded example were known. From these features, the
algorithm looked at similar records, classified them into clus-
ters, and labelled each cluster. Then, a regression model was
built on each cluster. Sixteen features were used to classify
the 63 swimmers: seven bouts of coordination, seven bouts of
speed, variation in speed (Smax − Smin), and variation in coordina-
tion (IdCmax − IdCmin). The stochastic neighbour embedding (SNE)
algorithm24 was applied to optimise data visualisation. This algo-
rithm projected the data in lower dimensional space while trying
to preserve the neighbourhood. It is based on the asymmetric prob-
ability pij that i would pick j as a neighbour:
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The dissimilarities were the scaled squared Euclidean distance:
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where xi and xj are two high-dimensional points and �i is a nor-
malised value for the entropy of the distribution set by hand. Then,
thanks to a dendrogram, cluster hierarchical analysis (CHA) deter-
mined several profiles within this cluster of swimmers (as done
before16,17,19). Robustness was achieved through the strong shape
method: the CHA was run with 20 different initialisations and each
swimmer was then labelled according to majority rule.

From there, the clustering analysis was validated by two meth-
ods. First in line with Breiman,25 Duda et al.,15 Rein et al.,17 clusters
and labels were validated by bagging. Bagging consists of repeating
this operation several times while excluding a different participant
each time and then determining whether the obtained clusters
are stable. Stability was assessed by the number of turnover, i.e.,



Download	English	Version:

https://daneshyari.com/en/article/5872827

Download	Persian	Version:

https://daneshyari.com/article/5872827

Daneshyari.com

https://daneshyari.com/en/article/5872827
https://daneshyari.com/article/5872827
https://daneshyari.com/

